SciELO - Scientific Electronic Library Online

 
vol.32 issue1A geometric proof of the Lelong-Poincaré formulaComparison theorems on fractional order difference equations author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.32 no.1 Antofagasta Mar. 2013

http://dx.doi.org/10.4067/S0716-09172013000100002 

Proyecciones Journal of Mathematics Vol. 32, No 1, pp. 15-29, March 2013. Universidad Católica del Norte Antofagasta - Chile

 

Generalized Ulam—Hyers—Rassias stability of a Cauchy type functional equation

 

Mohamed Akkouchi

Cadi Ayyad University, Maroc.


ABSTRACT

Using the alternative fixed point theorem, we establish the generalized Hyers-Ulam-Rassias stability of a Cauchy type functional equation for functions taking values in arbitrary complete (real or complex) â-normed spaces.

Subjclass [2000] : 39B10, 26D20, 39B70, 47H10.

Keywords: Alternative fixed point, GeneralizedHyers-Ulam-Rassias stability, Cauchy type functional equation, additive mappings, â-normed spaces.


 

REFERENCES

[1] 1. M. Akkouchi, Stability of certain functional equations via a fixed point of Ciric, Filomat, 25(2), pp. 121-127, (2011).

[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2, pp. 64-66, (1950).

[3] J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112 (3), pp. 729-732, (1991).

[4] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16, pp. 385—397, (1949).

[5] L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, Analele Universitatii de Vest din Timisoara, 41, pp. 25—48, (2003).

[6] L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), Art. ID4.

[7] L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte, 346, pp. 43—52, (2004).

[8] L. Cadariu and V. Radu, The fixed points method for the stability of some functional equations, Carpathian Journal of Mathematics, 23, pp. 63—72, (2007).

[9] P. W. Cholewa, Remarks on the stability of functional equations, A equationes Math., 27 (1984) 76-86. MR0758860 (86d:39016).

[10] S. Czerwik, Stability of functional equations of Ulam-Hyers-Rassias type, Hadronic Press, (2003).

[11] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer.Math. Soc., 74, pp. 305-309, (1968).

[12] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50, pp. 143-190, (1995).

[13] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math.Sci., 14, pp. 431-434, (1991).

[14] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27, pp. 222-224, (1941).

[15] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional Equations in Several Variables, Birkhauser, Boston, Basel, Berlin, (1998).

[16] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of -additive mappings, J. Approx. Theory, 72, pp. 131-137, (1993).

[17] S-M Jung, T-S Kim and K-S Lee, A fixed point approach to the stability of quadratic functional equation, Bull. Korean Math. Soc., 43(3), pp. 531-541, (2006).

[18] Zs. Pales, Generalized stability of the Cauchy functional equation, Aequationes Math., 56(3), pp. 222-232, (1998).

[19] C. Park and J. M. Rassias, Stability of the Jensen-type functional equation in C*—algebras: a fixed point approach, Abstract and Applied Analysis Volume 2009, Article ID 360432, 17 pages.

[20] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4, pp. 91—96, (2003).

[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, pp. 297-300, (1978).

[22] J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57,No. 3, pp. 268-273, (1989).

[23] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl., 62 (2000), pp. 23-130. MR1778016 (2001j:39042).

[24] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), pp. 264-284. MR1790409 (2003b:39036).

[25] Th. M. Rassias, The problem of S.M.Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246 (2), pp. 352-378, (2000).

[26] I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, (1979) (in Romanian).

[27] L. Szekelyhidi, On a stability theorem, C. R. Math. Rep. Acad.Sci. Canada, 3(5), pp. 253-255, (1981).

[28] L. Szekelyhidi, The stability of linear functional equations, C. R. Math. Rep. Acad. Sci. Canada, 3(2), pp. 63-67, (1981).

[29] L. Szekelyhidi, Ulam's problem, Hyers's solution and to where they led, in Functional Equations and Inequalities, Th. M. Rassias (Ed.), Vol. 518 of Mathematics and Its Applications, Kluwer Acad. Publ., Dordrecht, pp. 259-285, (2000).

[30] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed. Wiley, New York, (1940).


Mohamed Akkouchi

Department of Mathematics, Cadi Ayyad University, Faculty of Sciences-Semlalia, Av. Prince my Abdellah, B.P. 2390. Marrakech MAROC. e-mail : akkouchimo@yahoo.fr

Received : November 2012. Accepted : December 2012.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License