Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) vol.31 no.1 Antofagasta mar. 2012
http://dx.doi.org/10.4067/S0716-09172012000100002
Proyecciones Journal of Mathematics Vol. 31, No 1, pp. 11-24, March 2012. Universidad Catolica del Norte Antofagasta - Chile
On the GaussNewton method for solving equations
Ioaniss K. Argyros
Cameron University, U.S.A.
Saïd Hitlout
Poitiers University, France
ABSTRACT
We use a combination of the centerLipschitz condition with the Lipschitz condition condition on the Frechetderivative of the operator involved to provide a semilocal convergence analysis of the Gauss-Newton method to a solution of an equation. Using more precise estimates on the distances involved, under weaker hypotheses, and under the same computational cost, we provide an analysis of the Gauss Newton method with the following advantages over the corresponding results in [8]: larger convergence domain; finer error estimates on the distances involved, and an at least as precise information on the location ofthe solution
AMS Subject Classification. 65F20, 65G99, 65H10, 49M15.
Key Words. GaussNewton method, semilocal convergence, Frechet derivative, Lipschitz/centerLipschitz condition, convergence domain.
REFERENCES
[1] I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. and Appl., 298, pp. 374-397, (2004).
[2] I. K. Argyros, A convergence analysis of Newton-like methods for singular equations using outer or generalized inverses, Applicationes Mathematicae, 32, pp. 37-49, (2005).
[3] I. K. Argyros, Convergence and applications of Newton-type iterations, Springer Verlag Publ., New York, (2008).
[4] A. Ben-Israel, A Newton-Raphson method for the solution of systems ofequations, J. Math. Anal. Appl., 15, pp. 243-252, (1966).
[5] J.M.Gutierrez, A new semilocal convergence theorem for Newton's method, 79, pp. 131-145, (1997).
[6] Z. Huang, The convergence ball of Newton's method and the uniqueness ball of equations under Holder continuous derivatives, Comput. Appl. Math., 47, pp. 247-251, (2004).
[7] L. V. Kantorovich, G.P. Akilov, Functional analysis in normed spaces, Pergamon Press, New York, (1982).
[8] C. Li, W. Zhang, Convergence ofGauss-Newton's method, J. ofSouth-east University, (Don Nan Da Xue Xue Bao), (Natural Science Edition in Chinese), Vol. 31, 5, sept., pp. 135-138, (2001).
[9] P. A. Wedin, Perturbation theory for pseudo-inverse, BIT, 13, pp. 217-232, (1973).
[10] Y. Yuan, W. Sun, Optimization theory and methods. Nonlinear Programming. Springer Optimization and Its Applications, Springer, New York, (2006).
Ioannis K. Argyros
Department of Mathematics Sciences Cameron university
Lawton, OK 73505, U.S.A.
e-mail : iargyros@cameron.edu
Said Hilout
Laboratoire de Mathematiques et Applications
Poitiers university
Bd. Pierre et Marie Curie,
Teleport 2, B.P. 30179
86962 Futuroscope Chasseneuil Cedex,
France
e-mail : said.hilout@math.univ-poitiers.fr
Received : January 2011. Accepted : October 2011