SciELO - Scientific Electronic Library Online

vol.31 issue1On the Gauss-Newton method for solving equations author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.31 no.1 Antofagasta Mar. 2012 

Proyecciones Journal of Mathematics Vol. 31, No 1, pp. 1-9, March 2012. Universidad Catolica del Norte Antofagasta - Chile

Compact Composition Operators on Bloch type Spaces

René Erlín Castillo

Universidad Nacional de Colombia, Colombia

Julio C. Ramos Fernández

Universidad de Oriente, Venezuela



In this paper we characterize continuity and compactness of composition operators Cø; mapping the á-Bloch space into the μ-Bloch space, where μ is a weight defined on the unit disk D, in term of certain expression that involve the n-power of the symbol ø.

Keywords : Bloch spaces, Composition operators.

MSC 2010 : 30D45, 47B33.



[1] K. Attele, Toeplitz and Hankel operators on Bergman spaces, Hokkaido Math. J., 21, pp. 279-293, (1992).

[2] H. Chen and P. Gauthier, Composition operators on ì-Bloch spaces, Canad. J. Math., 61, pp. 50-75, (2009).

[3] J. Gimenez, R. Malaveand J. Ramos-Fernandez, Composition operators on ì-Bloch type spaces, Rend. Circ. Mat. Palermo, 59, pp.107-119, (2010).

[4] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347, pp. 2679-2687, (1995)  .

[5] J. C. Ramos Fernandez, Composition operators on Bloch-Orlicz type spaces, Appl. Math. Comput., 217, No 7, pp. 3392-3402, (2010).

[6] J.C.Ramos Fernandez, Composition operators between ì-Bloch spaces. Extracta Math. 26 (1), pp. 75-88, (2011).

[7] M. Tjani, Compact composition operators on some Mobius invariant Banach space, Ph. D. dissertation, Michigan State University, (1996)  .

[8] H. Wulan, D. Zheng and K. Zhu, Compact composition operators on BMO andthe Blochspace, Proc.Amer. Math.Soc., 137, pp. 3861-3868, (2009).

[9] J. Xiao, Composition operators associated with Bloch-type spaces, Complex Variables Theory Appl., 46, pp. 109-121, (2001).

[10] R. Yoneda, The composition operators on weighted Bloch space, Arch. Math. (Basel), 78, pp. 310-317, (2002).

[11] X. Zhang and J. Xiao, Weighted composition operators between ì-Bloch spaces on the unit ball, Sci. China Ser. A, 48, No. 10, pp. 1349-1368, (2005).

[12] R. Zhao, Essential norms of composition operators between Bloch type spaces, Proc.Amer. Math.Soc., 138, pp. 2537-2546, (2010).

Rene Erlin Castillo

Departamento de Matemáticas Universidad Nacional de Colombia, Ciudad Universitaria : Carrera 30, Calle 45, Bogotá, Colombia

e-mail : and

Julio C. Ramos Fernandez

Departamento de Matemática Universidad de Oriente 6101 Cumanáa Edo. Sucre, Republica Bolivariana de Venezuela e-mail :

Received : July 2011. Accepted : October 2011

*Partially supported by the Comision de Investigacion, Universidad de Oriente, Project CI-2-010301-1678-10.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License