Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) vol.30 no.3 Antofagasta dic. 2011
http://dx.doi.org/10.4067/S0716-09172011000300002
Proyecciones Journal of Mathematics Vol. 30, No 3, pp. 295-302, December 2011. Universidad Católica del Norte Antofagasta - Chile
A Note on Büchi's Problem for p-adic numbers
Marianela Castillo
Universidad de Concepción, Chile
ABSTRACT
We prove that for any prime p and any integer k > 2, there exist in the ring Zp of p-adic integers arbitrarily long sequences whose sequence of k-th powers 1) has its k-th difference sequence equal to the constant sequence (k!); and 2) is not a sequence of consecutive k-th powers. This shows that the analogue of Buchi's problem for higher powers has a negative answer over Zp. This result for k = 2 was recently obtained by J. Browkin.
AMS Classification : 11D72, 11D88.
Texto completo sólo en formato PDF
REFERENCES
[1] J. Browkin, Buchi sequences in local fields and local rings, Bull. Polish Acad. Sci. Math. 58, 109-115 (2010).
[2] H. Hasse, Number Theory, Springer (1980).
[3] N. Koblitz, P-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer Graduate Texts in Mathematics, (1996).
[4] J. Neukirch, Class field theory, Springer Verlag, Grundlehren der mathematischen Wissenschaften 280, A Series of Comprehensive Studies in Mathematics, (1986).
[5] H. Pasten, T. Pheidas and X. Vidaux, A survey on Buchi's problem: new presentations and open problems, Zapiski Nauchn. Sem. POMI 377, pp. 111-140, (2010).
[6] T. Pheidas and X. Vidaux, Extensions of Buchi's problem: Questions of decidability for addition and n-th powers, Fundamenta Mathematicae 185, pp. 171-194, (2005).
Marianela Castillo
Universidad de Concepcion
Casilla 160-C
Concepcion
e-mail : mcastillo@udec.cl
Received : March 2011. Accepted : September 2011