SciELO - Scientific Electronic Library Online

 
vol.29 número3BIFURCATION OF THE ESSENTIAL DYNAMICS OF LORENZ MAPS ON THE REAL LINE AND THE BIFURCATION SCENARIO FOR LORENZ LIKE FLOWS: THE CONTRACTING CASE índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.29 n.3 Antofagasta dic. 2010

http://dx.doi.org/10.4067/S0716-09172010000300008 

Proyecciones Journal of Mathematics
Vol. 29, N° 3, pp. 291-307, December 2010.
Universidad Católica del Norte
Antofagasta - Chile


FINITE TOPOLOGIES AND DIGRAPHS


Carlos Marijuán


Universidad de Valladolid, España



Correspondencia a:


Abstract

In this paper we study the relation between finite topologies and digraphs. We associate a digraph to a topology by means of the “specialization” relation between points in the topology. Reciprocally, we associate a topology to each digraph, taking the sets of vertices adjacent (in the digraph) to v, for all vertex v, as a subbasis of closed sets for the topology. We use these associations to examine the relation between a simple digraph and its homologous topology. We also extend this relation to the functions preserving the structure between these classes of objects.

AMS Classification : 54A05, 05C20.

Keywords : Finite topologies, digraphs.



References

[1] Alexandroff, P. S., Diskrete Rume, Matematiceskii Sbornik (N.S.) 2, pp. 501-518, (1937).

[2] Benoumhani, M., The number of topologies on a finite set, J. of Integer Sequences, Vol. 9, Article 06.2.6, (2006).

[3] Evans, J., Harary, F., Lynn, M., On the computer enumeration of finite topologies, Comm. ACM., 10, pp. 295-298, (1967).

[4] Erné, M., Stege, K., Counting finite posets and topologies topologies, Order, 8, pp. 247-265, (1991).

[5] Grothendieck, A., Dieudonn´e, J.A., El´ementes de G´eometrie Alg´ebrique I, Springer-Verlag, Berlin, (1971).

[6] Marijuán, C., Una teor´ia birracional para los grafos ac´iclicos, Ph. D. Dissertation, Universidad de Valladolid, (1988).

[7] Sloane, N. J. A., The on-line encyclopedia of integer sequences published electronically.

[8] Willard, S., General topology, Addison-Wesley, (1970)

C. Marijuán
Dpto. Matemática Aplicada
E.T.S.I. Informática
Paseo de Bel´en 15
47011-Valladolid
Spain
e-mail : marijuan@mat.uva.es


Received : October 2010. Accepted : November 2010

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons