SciELO - Scientific Electronic Library Online

vol.29 issue3ALPHA-SKEW-NORMAL DISTRIBUTIONFINITE TOPOLOGIES AND DIGRAPHS author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.29 no.3 Antofagasta Dec. 2010 

Proyecciones Journal of Mathematics
Vol. 29, N° 3, pp. 241-289, December 2010.
Universidad Católica del Norte
Antofagasta - Chile


Rafael Labarca1
Carlos Moreira2

1Universidad de Santiago de Chile, Chile
2I. M. P. A., Brasil

Correspondencia a:


In this article we provide, by using kneading sequences, the combinatorial bifurcation diagram associated to a typical two parameter family of contracting Lorenz maps on the real line. We apply these results to two parameter families of geometric Lorenz-like flows.

Keywords : Lorenz maps; combinatorial bifurcation diagramme; lexicographical world, geometric Lorenz-like flows.

Mathematics Subject Classification 2010 : Primary: 37010, 37C10, 37E05. Secondary : 37C20.


[1] Afraimovich V. S., Bykov V.V., Shil’nikov L.P The origin and structure of the Lorenz attractor Dokl. Akad. Nauk SSSR 234, (1977), No 2, pp. 336-339, (1977).

[2] Afraimovich V. S., Bykov V.V., Shil’nikov L.P. On structurally stable attracting limit sets of Lorenz attractor type Trans. Mosc.Math. Soc. 44, pp. 153-216 (1983). 431-443, (1990).

[3] Arnold V. I. Small Denominators. I. On the mapping of the circumference onto itself. Amer.Math. Soc. Transl. 2end Ser. Vol. 46, pp. 213-284, (1965).

[4] Balibrea F., Jim´enez L´opez V. A characterization of chaotic functions with entropy zero via their maximal scrambled sets. Math. Bohem. 120, N o 2, pp. 293-298, (1998).

[5] Bamón,R.; Labarca, R.; Ma˜n´e R.; Pacifico, M.J.The explosion of singular cycles Publ. Math. IHES vol 78, pp. 207-232, (1993).

[6] Boyland P. Bifurcations of Circle Maps: Arnold’s Tongues, Bistability and Rotation Intervals Comm. Math. Phys. 106, pp. 353-381, (1986).

[7] Brucks K. M., Misiurewicz M., Tresser Ch. Monotonicity properties of the family of trapezoidals maps Comm. Mat. Phys. 137, pp. 1-12(1991).

[8] Campbell D. K., Galeeva R., Tresser CH., Uherka D.J. Piecewise linear models for the quasiperiodic transition to chaos Chaos 6(2), pp. 121-154, (1996).

[9] De Melo W. , Martens M. Universal Models for Lorenz maps Ergod. Th. & Dynam. Sys., 21, pp 833-860, (2001).

[10] De Melo W., Van Strien S. Lectures on One Dimensional Dynamics Springer Verlag. (1993).

[11] Galeeva R., Martens M., Tresser Ch. Inducing, slopes and conjugacy classes Israel Journal of Math. 99, pp. 123-147 (1997).

[12] Galeeva R., Van Strien S. Which families of l-modals maps are full TAMS, vol 348, #8, pp. 3215-3221, (August 1996 ).

[13] Gambaudo, J-M., Tresser C. Dynamique r´eguli`ere ou chaotique. Applications du cercle ou l’intervalle ayant une discontinuit´e. C.R. Acad. Sc. Paris, t. 300, Serie I, n0 10, pp. 311—313 (1985).

[14] Graczyk J., Swiatek G. Generic Hiperbolicity in the logistic family Ann. of Math. 146, pp. 1-52 (1997).

[15] Guckenheimer J. A Strange, Strange AttractorIn :Hopf Bifurcations and its applications J. E. Marsden and M. McCracken Eds. pp 368-381. Springer Verlag. Berlin. 1976.

[16] Guckenheimer J., Williams R. F. Structural Stability of Lorenz Attractors Publ. Math. IHES 50, pp. 59-72, (1979).

[17] Herman M. Mesure de Lebesgue et nombre de rotation. Lect. Not. in Math. 597, pp 271-293 ( 1977).

[18] Hubbard J. H., Sparrow C.T. The classification of topologically expansive Lorenz maps Comm. Pure and App. Math. XLIII, pp 431-443, (1990).

[19] Labarca, R. Bifurcation of Contracting Singular Cycles Ann. Scient. Ec. Norm. Sup. 4serie,t. 28, pp. 705-745, (1995).

[20] Labarca, R.A note on the topological classification of Lorenz maps on the interval London Mathematical Society. Lecture Notes Series 279, pp. 229-245.

[21] Labarca,R.; Moreira C. Bifurcation of the Essential Dynamics of Lorenz Maps of the real Line and the Bifurcation Scenario for the Linear family Scientia Ser A Math. Sci (N-S) vol. 7, pp. 13-29, (2001).

[22] Labarca, R.; Moreira C. Bifurcation of the Essential Dynamics of Lorenz Maps and applications to Lorenz Like Flows: Contributions to the study of the Expanding Case. Bol. Soc. Bros. Mat. (N-S) Vol. 32 ,pp. 107-144, (2001).

[23] Labarca, R.; Moreira C. Essential Dynamics for Lorenz Maps on the real line and Lexicographical World. Ann. de L’Institut H. Poincar Anal. non Linneaire vol. 23, pp. 683-694 (2006).

[24] Labarca R., Plaza S. Bifurcations of discontinuous maps of the interval and palindromic numbers. Bolet´in de la Sociedad Matem´atica Mexicana(3) Vol 5., pp. 87-104. (2001).

[25] Labarca R., Vásquez L. On the Characterization of the Kneading Sequences Associated to Injective Lorenz Maps of the Interval and to Orientation Preserving Homeomorphisms of the Circle. Accepted for publication in the Bolet´in de la SociedadMatem´atica Mexicana(3). (2010).

[26] Labarca R., V´asquez L. On the Characterization of the Kneading Sequences Associated to Lorenz Maps of the Interval. Preprint (2010).

[27] Lorenz E. N. Deterministic non-periodic flow J. Atmos. Sci.20, pp. 130-141, (1963).

[28] MacKay R. S., Tresser Ch. Boundary of topological chaos for bimodal maps of the interval J. London Math. Soc. (2) 37, pp. 164-181, (1988).

[29] MacKay R., Tresser Ch. Some flesh on the skeleton: the bifurcation structure of bimodals maps Physica D 27, pp. 412-422, (1987).

[30] Mañé R. Ergodic Theory and Differentiable Dynamics. Springer Verlag. (1987).

[31] Martens M., Tresser Ch. Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps Proc. Am. Math. Soc.Vol.124, Number 9, pp. 2863-2870, (1996).

[32] Sands D., Nowicki T. Non-uniform hiperbolicity and universal bounds for S-unimodal maps Inven. Math. 132, pp. 633-680, (1998).

[33] Otero-Espinar M. V., Tresser Ch. Global Complexity and Essential Simplicity: A conjectural picture of the boundary of chaos for smooth endomorphisms of the interval Physica D 39 pp. 163-168, (1989).

[34] Pacifico, M. J., Rovella A. Unfolding Contracting Singular Cycles Ann. Scient. Ec. Norm. Sup. 4serie t.26, pp. 691-700, (1993).

[35] Ringland J., Tresser Ch.A genealogy for finite kneading sequences of bimodal maps on the intervalTAMS,vol.347 ,#12, pp 4599-4624, (December 1995).

[36] Rovella A. The dynamics of the perturbations of the contracting Lorenz Attractor Bull. Soc. Bras. Mat. Vol 2, pp. 233-259 )(1993).

[37] Saint Pierre M. Topological and measurable dynamics of Lorenz maps Dissertationes Mathematicae 1999, POLSKA AK. NAUK, INST. MAT.

[38] Swiateck G. Rational Rotation Numbers for mapps of the circle Comm. Math. Phys. 119, pp. 109-128, (1988).

[39] Tresser Ch. Nouveaux types de transitions vers une entropie topologique positive CRAS, t 296, Serie I, pp. 729-732, (1983).

[40] Williams R. F. The structure of Lorenz Attractors In Turbulence Seminar Berkeley 1976/1977 P. Bernard, T. Ratiu ( Eds.), Springer-Verlag. New York,Heidelberg, Berlin, pp. 94-112.

R. Labarca
Departamento de Matematica y Ciencias de la Computación
Universidad de Santiago de Chile
Casilla 307 Correo 2
e-mail :

C. Moreira
I. M. P. A.
Estrada Dona Castorina 110
CEP 22460-320
Jardim Botanico
Rio de Janeiro
e-mail :

Received : October 2010. Accepted : November 2010

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License