SciELO - Scientific Electronic Library Online

vol.29 número3A NEW DEFINITION OF S* CLOSEDNESS IN L-"TOPOLOGICAL SPACESPOLYNOMIAL SETS GENERATED BY e tf(xt)?(yt) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.29 n.3 Antofagasta dic. 2010 

Proyecciones Journal of Mathematics
Vol. 29, N° 3, pp. 193-199, December 2010.
Universidad Católica del Norte
Antofagasta - Chile


K. V. R. Srinivas1
Y. L. Anasuya2

1Regency Institute Of Technology, India
2Andhra University, India

Correspondencia a:


First we have obtained equivalent conditions for a regular semigroup and is equivalent to N = N1 It is observed that every regular semigroup is weakly separative and C ⊆ S and on a completely regular semigroup S ⊆ N and S is partial order . It is also obtained that a band (S, .) is normal iff C = N . It is also observed that on a completely regular semigroup (S, .), C = S = N iff (S, .) is locally inverse semigroup and the restriction of C to E(S) is the usual partial order on E(S). Finally it is obtained that, if (S, .) is a normal band of groups then C = S = N .

Key Words : Locally inverse semigroup, orthodox semigroup, completely regular semigroup, normal band.

AMS Subject Classification No. :20M18.


[1] Conrad, P. F., The hulls of semiprime rings, Bull. Austral. Math. Soc. 12, pp. 311314(1975).

[2] Burgess, W. D., Raphael, R., On Conrads partial order relation on semiprime rings and semigroups, Semigroup Forum 16, pp. 133140, (1978).

[3] Nambooripad, K. S. S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23, pp. 249260, (1980).

[4] Drazin, M. P., A partial order in completely regular semigroups, J. Algebra 98, pp. 362374, (1986).

[5] Liu, Guo-Xin, Song, Guang-tian, Some partial orders on completely regular semigroups, J. Univ. Sci. and Tech. China 34, No. 5, pp. 524528, (2004).

[6] Petrich, M., Reilly, N., Completely Regular Semigroups, Wiley Sons, New York, (1999).

[7] Petrich, M., Introduction to Semigroups, Charles E. Merrill Publ. Comp., Columbus, Ohio, (1973).

[8] Howie, J. M., Fundamentals of Semigroup Theory, Clarendon Press, Oxford (1995).

[9] Grillet, P. A., Semigroups. An Introduction to the Structure Theory, Pure and Applied Mathematics 193, Marcel Dekker, New York (1995).

[10] Ramana Murthy, P. V., Srinivas, K. V. R., Characterization of partial orders on regular semigroups, A. P. Akademi of sciences, Hyderabad, Vol. 8, No. 4, pp. 289 292, (2004).

K. V. R. Srinivas
Regency institute of technology,
YANAM - 533464
Near Kakinada
e-mail :

Y. L. Anasuya
Department of Mathematics
Andhra University
e-mail :

Received : April 2009. Accepted : September 2010

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons