Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) v.29 n.3 Antofagasta dic. 2010
http://dx.doi.org/10.4067/S0716-09172010000300003
Proyecciones Journal of Mathematics
Vol. 29, N° 3, pp. 193-199, December 2010.
Universidad Católica del Norte
Antofagasta - Chile
PARTIAL ORDERS IN REGULAR SEMIGROUPS
K. V. R. Srinivas1
Y. L. Anasuya2
1Regency Institute Of Technology, India
2Andhra University, India
Correspondencia a:
Abstract
First we have obtained equivalent conditions for a regular semigroup and is equivalent to N = N1 It is observed that every regular semigroup is weakly separative and C ⊆ S and on a completely regular semigroup S ⊆ N and S is partial order . It is also obtained that a band (S, .) is normal iff C = N . It is also observed that on a completely regular semigroup (S, .), C = S = N iff (S, .) is locally inverse semigroup and the restriction of C to E(S) is the usual partial order on E(S). Finally it is obtained that, if (S, .) is a normal band of groups then C = S = N .
Key Words : Locally inverse semigroup, orthodox semigroup, completely regular semigroup, normal band.
AMS Subject Classification No. :20M18.
References
[1] Conrad, P. F., The hulls of semiprime rings, Bull. Austral. Math. Soc. 12, pp. 311314(1975).
[2] Burgess, W. D., Raphael, R., On Conrads partial order relation on semiprime rings and semigroups, Semigroup Forum 16, pp. 133140, (1978).
[3] Nambooripad, K. S. S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23, pp. 249260, (1980).
[4] Drazin, M. P., A partial order in completely regular semigroups, J. Algebra 98, pp. 362374, (1986).
[5] Liu, Guo-Xin, Song, Guang-tian, Some partial orders on completely regular semigroups, J. Univ. Sci. and Tech. China 34, No. 5, pp. 524528, (2004).
[6] Petrich, M., Reilly, N., Completely Regular Semigroups, Wiley Sons, New York, (1999).
[7] Petrich, M., Introduction to Semigroups, Charles E. Merrill Publ. Comp., Columbus, Ohio, (1973).
[8] Howie, J. M., Fundamentals of Semigroup Theory, Clarendon Press, Oxford (1995).
[9] Grillet, P. A., Semigroups. An Introduction to the Structure Theory, Pure and Applied Mathematics 193, Marcel Dekker, New York (1995).
[10] Ramana Murthy, P. V., Srinivas, K. V. R., Characterization of partial orders on regular semigroups, A. P. Akademi of sciences, Hyderabad, Vol. 8, No. 4, pp. 289 292, (2004).
K. V. R. Srinivas
Regency institute of technology,
YANAM - 533464
Near Kakinada
e-mail : srinivas_kandarpa06@yahoo.co.in
Y. L. Anasuya
Department of Mathematics
Andhra University
Visakhapatnam
INDIA
e-mail : anasuyapamarthy@gmail.com
Received : April 2009. Accepted : September 2010