Servicios Personalizados
Revista
Articulo
Indicadores
-
Citado por SciELO
-
Accesos
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) v.29 n.3 Antofagasta dic. 2010
http://dx.doi.org/10.4067/S0716-09172010000300002
Proyecciones Journal of Mathematics
Vol. 29, N° 3, pp. 181-191, December 2010.
Universidad Católica del Norte
Antofagasta - Chile
A NEW DEFINITION OF S* CLOSEDNESS IN L-TOPOLOGICAL SPACES
Bo Chen
Southwest University, P. R. China
Correspondencia a:
Abstract
In this paper, a new notion of S* closedness in L-topological Spaces is introduced by means of semi-open L-sets and their inequality where L is a complete DeMorgan algebra.This new definition doesnt rely on the structure of basic lattice L. It can be characterized by means of semi-open L-sets and their inequality . When L is completely distributive DeMorgan algebra, its many characterizations are presented.
Keywords and Phrases : semiopen L - set, S* closedness, L-topological space.
Mathematics Subject Classification(2000) : 54A40,54A20.
References
[1] K. K. Azad, On fuzzy semicontinuity,fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl, 82, pp. 14-32, (1981).
[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl, 24, pp. 182-190, (1968).
[3] B. Ghosh, Semicontinuous and semiclosed mappings and semiconnectedness in fuzzy setting, Fuzzy Sets and Systems, 35, pp. 345-355, (1990).
[4] G. Gierz, et al., A compendium of continuous Lattices, Springer Verlag, Berlin,1980.
[5] S. R. T. Kudri, Semicompactness and S*-closedness in L-fuzzy topological spaces, Fuzzy Sets and Systems, 109, pp. 223-231, (2000).
[6] S. R. T. Kudri, M. W. Warner, Some good L-fuzzy compactnessrelated concepts and their properties I, Fuzzy Sets and Systems, 76, pp. 141-155, (1995).
[7] S. R. T. Kudri, M. W. Warner, Some good L-fuzzy compactnessrelated concepts and their properties II, Fuzzy Sets and Systems, 76, pp. 157-168, (1995).
[8] Y. M. Liu, M. K. Luo, Fuzzy topology,World Scientific,Singapore, (1997).
[9] S. Malakar, On fuzzy semi-irresolute and strongly irresolute functions, Fuzzy Sets and Systems, 45, pp. 239-244, (1992).
[10] F. G. Shi, A new notion of fuzzy compactness in L-topological spaces, Information Science. 173, pp. 35-48, (2005).
[11] F. G. Shi, Semicompactness in L-topological spaces, Internatinal Journal of Mathematics and Mathematical Sciences, 12, pp. 1869-1878,(2005).
[12] F. G. Shi, A new form of fuzzy ß-compactness, Proyecciones Journal of Mathematics, 24, pp. 105-119, (2005).
[13] F. G. Shi, Countable compactness and the Lindel¨of property of L-fuzzy sets, Iranian Journal of Fuzzy System, 1, pp. 79-88, (2004).
[14] F. G. Shi, A new approach to fuzzy almost compactness, Proyecciones Journal of Mathematics, 28, pp. 75-87, (2009).
[15] F. G. Shi, A new form of fuzzy a-compactness, Mathematica Bohemica 131, pp. 15-28, (2006).
[16] G. J. Wang, Theory of L-fuzzy topological spaces,Shaanxi Normal University Press, Xian, (1988).
Bo Chen
School of Mathematics and Statistics
Southwest University
Chongqing 400715
P. R. China
e-mail : bobochen@swu.edu.cn
Received : June 2009. Accepted : May 2010