SciELO - Scientific Electronic Library Online

 
vol.29 issue1MEASURES OF FUZZY SUBGROUPSON HARMONIOUS COLORING OF TOTAL GRAPHS OF C(Cn), C(K1,n) AND C(Pn) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.29 no.1 Antofagasta May 2010

http://dx.doi.org/10.4067/S0716-09172010000100006 

Proyecciones Journal of Mathematics
Vol. 29, N° 1, pp. 49-56, May 2010.
Universidad Católica del Norte
Antofagasta - Chile


A NOTE ON THE UPPER RADICALS OF SEMINEARRINGS


Muhammad Zulfiqar

Govt. College University Lahore, Pakistan


Correspondencia a:


Abstract

In this paper we work in the class of seminearrings. Hereditary properties inherited by the lower radical generated by a class M have been considered in [2, 5, 6, 7, 9, 10, 12]. Here we consider the dual problem, namely strong properties which are inherited by the upper radical generated by a class M.

Keywords : Fuzzy subgroup, implication operator, subgroup degree

Subclass : [2000]03E72, 08A72, 20N25



References

[1] Birkenmeier, G. F., "SEMINEARRINGS AND NEARRINGS" induced by the circle operation, preprint, (1989).        [ Links ]

[2] Divinsky, N. J., "RINGS AND RADICALS", Toronto, (1965).        [ Links ]

[3] Golan, J. S., "THE THEORY OF SEMIRINGS WITH APPLICATIONS IN MATHEMATICS AND THEORETICAL COMPUTER SCIENCE", Pitman Monographs and Surveys in Pure and Applied Maths. 54, New-York, (1986).        [ Links ]

[4] Hebisch, U. and Weinert, H. J., "SEMIRINGS ALGEBRAIC THEORY AND APPLICATIONS IN COMPUTER SCIENCE", Vol. 5 (Singapore 1998).        [ Links ]

[5] Hoffman, A. E. and Leavitt, W. G., "Properties inherited by the Lower Radical", Port. Math. 27, pp. 63-66, (1968).        [ Links ]

[6] Krempa, N. J. and Sulinski, A., "Strong radical properties of alternative and associative rings", J. Algebra 17, pp. 369-388, (1971).        [ Links ]

[7] Leavitt, W. G., "Lower Radical Constructions', Rings, Modules and Radicals, Budapest, pp. 319-323, (1973).        [ Links ]

[8] Olson, D. M. and Jenksins, T. L., "Radical Theory for Hemirings", Jour. of Nat. Sciences and Math., Vol. 23, pp. 23-32, (1983).        [ Links ]

[9] Szasz, F. A., "RADICALS OF RINGS", Mathematical Institute Hungarian Academy of Sciences, (1981).        [ Links ]

[10] Tangeman, R. L. and Kreiling, D., "Lower radicals in non-associative rings", J. Australian Math. Soc. 14, pp. 419-423, (1972).        [ Links ]

[11] Hoorn, V. G. and Rootselaar, B., " Fundamental notions in the theory of seminerarings", Compositio Math. 18, pp. 65-78, (1966).        [ Links ]

[12] Wiegandt, R., "RADICAL AND SEMISIMPLE CLASSES OF RINGS", Queens University, Ontarto, Canada, (1974).        [ Links ]

[13] Weinert, H. J., "Seminearrings, seminearfield and their semigrouptheoretical background.", Semigroup Forum 24, pp. 231-254, (1982).        [ Links ]

[14] Weinert, H. J., "Extensions of seminearrings by semigroups of right quotients", Lect. Notes Math. 998, pp. 412-486, (1983).        [ Links ]

[15] Yusuf, S. M. and Shabir, M., "Radical classes and semisimple classes for hemiring", Studia Sci. Math. Hungarica 23, pp. 231-235, (1988).        [ Links ]

[16] Zulfiqar, M., "The sum of two radical classes of hemirings", Kyungpook Math. J. Vol. 43, pp. 371-374, (2003).        [ Links ]

Received : June 2009. Accepted : December 2009

Muhammad Zulfiqar
Department of Mathematics
Govt.College University Lahore
Pakistan
e-mail : mzulfiqarshafi@hotmail.com

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License