SciELO - Scientific Electronic Library Online

vol.28 issue1ON SUMS OF BINOMIAL COEFFICIENTSA NOTE ON THE FIBER DIMENSION THEOREM author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.28 no.1 Antofagasta May 2009 

Proyecciones Journal of Mathematics
Vol. 28, No 1, pp. 47—56, May 2009.
Universidad Católica del Norte
Antofagasta - Chile



National Institute of Technology Calicut, India.

Correspondencia a:

In this paper the concept of finitistic spaces in L-topological spaces is introduced by means of α-Q-covers of open L subsets. Also a characterization of finitistic spaces in the weakly induced L-topological spaces is obtained. Moreover the behavior of finitistic spaces under various types of maps such as fuzzy perfect maps is also investigated.

[1] T. Baiju and Sunil Jacob John, Covering dimension and Normality in L-topological spaces, (Communi         [ Links ]cated).
[2] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press,         [ Links ](1972).
[3] C. Chang, Fuzzy Topological Spaces, Journal of Math. Anal. Appl., Vol. 24, pp. 182—190,         [ Links ](1968).
[4] S. Deo, Topology of finitistic spaces and related topics, Bull. Allahabad Math. Soc., Vol. 2, pp. 31—61,         [ Links ](1987).
[5] S. Deo and A. R. Pears, A completely finitistic space is finite dimensional, Bull. London Math. Soc., Vol. 17, pp. 49—51,         [ Links ](1985).
[6] S. Deo and M. Singh, On certain construction in finitistic spaces, Int. J. Math. And Math. Soc. Vol. 6, pp. 477—482,         [ Links ](1983).
[7] S. Deo and H. S. Tripathy, Compact lie group action on finitistic spaces, Topology, Vol. 21, pp. 393—399,         [ Links ](1982).
[8] J. Goguen, L-fuzzy Sets, J. Math. Anal. Appl., Vol. 18, pp. 145-174,         [ Links ](1967).
[9] Y. Hattori, A note on finitistic spaces, Q & A in General Topology, Vol. 3, pp. 43—55,         [ Links ](1985).
[10] Y. Hattori, finitistic spaces and Dimension, Houston Journal of Mathematics, Vol. 25, No. 4,         [ Links ](1999).
[11] U. Hohle and S. E. Rodabaugh, Mathematics of Fuzzy Sets : Logic, Topology and Measure Theory, The Hand Book of Fuzzy Set Series 3, Kluwer Academic Pub.,         [ Links ](1999).
[12] D. S. Jamwal and Shakeel Ahmed, Covering Dimension and Finitistic Spaces in L-topology, Conf. Proc. Fuzzy Set Theory, held in B.H.U., Allied Pub., pp. 117—122,         [ Links ](2002).
[13] T. Kubiak, The topological modification of the L-fuzzy unit interval, : S.E. Rodabaugh, E.P. Klement, U. Hohle (Eds.), Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht, pp. 275—305,         [ Links ](1992).
[14] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., Vol. 56, pp. 621—633,         [ Links ](1976).
[15] Shakeel Ahmed, On α-Finitistic Spaces, Tamsui Oxford Journal of Mathematical Sciences, Vol. 22, No. 1, pp. 73—82,         [ Links ](2006).
[16] R. G. Swan, A new method of fixed point theory, Comm. Math. Helv. Vol. 34, pp. 1—16,         [ Links ](1960).
[17] G. J. Wang, On the structure of fuzzy lattices, Acta math. Sinica, Vol. 29, pp. 539—543,         [ Links ](1986).
[18] G. J. Wang, Theory of L-fuzzy topological spaces, Shaanxi Normal University Pub., Xian,         [ Links ](1988).
[19] Ying-Ming Liu and Mao-Kang Luo, Fuzzy Topology, Advances in Fuzzy SystemsApplications and Theory Vol.9, World Scientific, (1997).
        [ Links ]

Department of Mathematics
National Institute of Technology Calicut
Calicut-673, 601
e-mail :

Department of Mathematics
National Institute of Technology Calicut
Calicut-673, 601
e-mail :

Received : February 2009. Accepted : April 2009

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License