SciELO - Scientific Electronic Library Online

 
vol.25 issue2DIFFEOLOGICAL SPACESGENERALIZED CONNECTIVITY author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.25 no.2 Antofagasta Aug. 2006

http://dx.doi.org/10.4067/S0716-09172006000200004 

Proyecciones Journal of Mathematics
Vol. 25, No 2, pp. 179-189, August 2006.
Universidad Católica del Norte
Antofagasta - Chile

ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES *


EWA TYSZKOWSKA

UNIVERSITY OF GDANSK, POLAND



Abstract


A symmetry of a Riemann surface X is an antiholomorphic involution ø. The species of ø is the integer ek, where k is the number of connected components in the set Fix(ø) of fixed points of ø and ε = -1 if X \ Fix(ø) is connected and ε = 1 otherwise. A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if it admits a conformal involution p, called a p-hyperelliptic involution, for which X/p is an orbifold of genus p. Symmetries of p-hyperelliptic Riemann surfaces has been studied by Klein for p = 0 and by Bujalance and Costa for p > 0. Here we study the species of symmetries of so called pq-hyperelliptic surface defined as a Riemann surface which is p- and q-hyperelliptic simultaneously.


keywords : p-hyperelliptic Riemann surface, automorphisms of Riemann surface, fixed points of automorphism, symmetry


References


[1] E. Bujalance, J. Etayo, J. Gamboa, G. Gromadzki: ”Automorphisms Groups of Compact Bordered Klein Surfaces. A Combinatorial Approach”, Lecture Notes in Math. vol. 1439, Springer-Verlag (1990).


[2] E. Bujalance, A.F.Costa: ”On symmetries of p-hyperelliptic Riemann surfaces ”, Springer-Verlag (1997),


[3] H. M. Farkas, I. Kra: ”Riemann Surfaces”, Graduate Text in Mathematics, Springer-Verlag (1980)


[4] A.Harnack: ”Uber die Vieltheiligkeit der ebenen algebraischen Kurven”, Math. Ann. 10, (1876), pp. 189-199.


[5] F.Klein: Über Realitätsverhältnisse bei einem beliebigen Geschlechte zugehörigen Normalkurve der φ Math. Ann. 42 (1893) 1-29.


[6] A. M. Macbeath:” Action of automorphisms of a compact Riemann surface on the first homology group”. Bull. London Math. Soc. 5 (1973), 103-108.


[7] E. Tyszkowska, On pq-hyperelliptic Riemann surfaces, Coll. Math. 103 (1), (2005), 115-120.


[8] E. Tyszkowska, On p-hyperelliptic involutions of Riemann surfaces, Beiträge zur Algebra und Geometrie, to appear.

*Supported by BW 5100-5-0089-5

Received : May 2006. Accepted : June 2006


Ewa Tyszkowska
Institute of Mathematics
University of Gdansk
Wita Stwosza 57,
80-952 Gdánsk
Poland
e-mail : Ewa.Tyszkowska@math.univ.gda.pl

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License