SciELO - Scientific Electronic Library Online

 
vol.24 issue3AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.24 no.3 Antofagasta Dec. 2005

http://dx.doi.org/10.4067/S0716-09172005000300007 

 

Proyecciones
Vol. 24, No 3, pp. 287-294, December 2005.
Universidad Católica del Norte
Antofagasta - Chile

 

COUNTABLE S*-COMPACTNESS IN L-SPACES

 

GUI - QIN YANG

Mudanjiang Teachers College, China


Abstract

In this paper, the notions of countable S*-compactness is introduced in L-topological spaces based on the notion of S*-compactness. An S*-compact L-set is countably S*-compact. I¦ L = [0, 1], then countable strong compactness implies countable S*-compactness and countable S*-compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S*-compact L-set and a closed L-set is countably S*-compact. The continuous image of a countably S*-compact L-set is countably S*-compact. A weakly induced L-space (X, T ) is countably S*-compact if and only if (X, [T]) is countably compact.

Subjclass : 54A40

Keywords : L-topology, ßa-open cover, Qa-open cover, S*-compactness, countable S*-compactness.

 

References

[1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24, pp. 182—190, (1968).         [ Links ]

[2] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice I, Indagationes Mathematicae (Proceedings) 85, pp. 403—414, (1982).         [ Links ]

[3] T. E. Gantner, R. C. Steinlage and R.H.Warren, Compactness in fuzzy topological spaces, J.Math. Anal. Appl. 62, pp. 547-562, (1978).         [ Links ]

[4] G. Gierz, et al., A compendium of continuous lattices, Springer Verlag, Berlin, (1980).         [ Links ]

[5] J. A. Goguen, The fuzzy Tychonoff theorem, J.Math. Anal. Appl. 43, pp. 734—742, (1973).         [ Links ]

[6] Z. F. Li, Compactness in fuzzy topological spaces, Chinese Kexue Tongbao 6, pp. 321-323, (1983).         [ Links ]

[7] Y. M. Liu, Compactness and Tychnoff Theorem in fuzzy topological spaces, Acta Mathematica Sinica 24, pp. 260-268, (1981).         [ Links ]

[8] Y. M. Liu, M. K . Luo, Fuzzy topology, World Scientific, Singapore, (1997).         [ Links ]

[9] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56, pp. 621-633, (1976).         [ Links ]

[10] R. Lowen, A comparision of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64, pp. 446—454, (1978).         [ Links ]

[11] G. W. Meng, Countable N-compactness in L-fuzzy topological spaces, Fuzzy Systems and Mathematics. add, pp. 234—238, (1992).         [ Links ]

[12] F.-G. Shi, G.-Q. Yang, Countable fuzzy compactness in L-topological spaces, J. Harbin Univ. Sci. & Tech. 2, pp. 499—507, (1992).         [ Links ]

[13] F.-G. Shi, C.-Y. Zheng, O-convergence of fuzzy nets and its applications, Fuzzy Sets and Systems 140, pp. 499—507, (2003).         [ Links ]

[14] F.-G. Shi, Countable compactness and the Lindelöf property of L-fuzzy sets, Iranian Journal of Fuzzy Systems, 1, pp. 79—88, (2004).         [ Links ]

[15] F.-G. Shi. A new notion of fuzzy compactness in L-topological spaces, Information Sciences 173, pp. 35—48, (205), (2005).         [ Links ]

[16] G.-J. Wang, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl. 94, pp. 1—23, (1983).         [ Links ]

[17] G.-J. Wang, Theory of L-fuzzy topological space, Shanxi Normal University Press, Xi’an, (1988). (in Chinese).         [ Links ]

[18] C. K. Wong, Covering properties of fuzzy topological spaces, J. Math. Anal. Appl. 43, (1973), pp. 697—704.         [ Links ]

[19] L. X. Xuan, Countable strong compactness and strong sequential compactness, J. Nanjing Normal Unifersity 2, pp. 14—19, (1989).         [ Links ]

[20] L. X. Xuan, Countable ultra-compactness and ultra-sequential compactness, J. Mathematical Research and Exposition 9, pp. 519—520, (1989)         [ Links ]

[21] D. S. Zhao,The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128, pp. 64—70, (1987).         [ Links ]

 

Yang Gui-Qin
Department of Mathematics
Mudanjiang Teachers College
Mudanjiang 157012
P. R. China
e-mail : guiqin yang@hotmail.com

Received : September 2005. Accepted : November 2005

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License