SciELO - Scientific Electronic Library Online

 
vol.24 issue3FIXED POINTS OF A FAMILY OF EXPONENTIAL MAPSTOPOLOGICAL CLASSIFICATION OF COMPACT SURFACES WITH NODES OF GENUS 2 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.24 no.3 Antofagasta Dec. 2005

http://dx.doi.org/10.4067/S0716-09172005000300004 

 

Proyecciones
Vol. 24, No 3, pp. 239-255, December 2005.
Universidad Católica del Norte
Antofagasta - Chile

 

THE NATURAL VECTOR BUNDLE OF THE SET OF MULTIVARIATE DENSITY FUNCTIONS *

 

E. MARCHI and P. M. MORILLAS

UNSL - CONICET, ARGENTINA


Abstract

We find a description of the set of multivariate density functions with given marginals and introduce an associated vector bundle. The interest for the probability theory is restricted to the nonnegative elements in the sets of the derived vector bundle. The fiber is the space of all correlation measures among a multivariate density function and its unidimensional marginals.

Keywords : Multivariate density function, marginals, vector bundle

Subjclass 2000 : Primary 60E05

 

*Research partially supported by CONICET, Argentina.

 

References

[1] Cafarelli L., Feldman M. and McCann R. J. - Constructing optimal maps for Mongeés transport problem as a limit of strictly convex costs, Journal of the American Mathematical Society, Vol. 15, No. 1, pp. 1-26, (2001).

[2] Cafarelli L. - The Monge-Ampére equation and optimal transportation, an elementary review, Lectures Notes in Mathematics, Vol. 1813, Springer-Verlag, pp. 1-10, (2003).

[3] DalléAglio G. - Fréchet classes: the beginnings, Advances in Probability Distributions with Given Marginals, Eds. G. DalléAglio, S. Kotz, and G. Salinetti. Kluwer Academic Publishers, Dordrecht, pp. 1-12, (1991).

[4] Fréchet, M. - Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon, Sc., Vol. 4, pp. 53-84, (1951).

[5] Hoeffding, W. Masstabinvariante korrelationstheorie, Schriften des Matematischen Instituts und des Instituts für Angewandte Mathematik der Universität Berlin, Vol. 5, Heft 3, pp. 179-233, (1940).

[6] Hoeffding, W. - Masstabinvariante korrelationsmasse für diskontinuierliche Verteilungen, Arkiv für mathematischen Wirtschaften und Sozialforschung, Vol. 7, pp. 43-70, (1941).

[7] Joe, H. - Multivariate Models and Dependence Concepts, Chapman & Hall, London, (1997).

[8] Larotonda A. - Notas de Variedades Diferenciables, INMABB, Universidad Nacional de Bahéia Blanca, Argentina, (1980).

[9] Landsburg S. - Nash equilibria in quantum games, preprint available at http://www.landsburg.com/pdf.

[10] Marchi, E., Garcéia Jurado I. and Prada J. M. - Refinamientos del concepto de equilibrio en extensiones generalizadas de juegos finitos, Investigación Operativa, Vol. 6, No. 1, pp. 83-92, (1991).

[11] Marchi, E. - Cooperative equilibrium, Compt. & Math. with Appl., Vol. 12B, No. 5/6, pp. 1185-1186, (1986a).

[12] Marchi, E. - Equilibrium points for rational games related with partitioned expanding economies, Advances in Modeling & Simulation, Vol. 32, No. 2, pp. 57-64, (1992).

[13] Marchi, E. - Nucleolus, equilibria, correlation, Advances in Modeling & Simulation Modeling, Vol. 32, No. 2, pp. 7-11, (1996).

[14] Marchi, E. - On the possibility of an unusual extension of the minimax theorem, Z. Wahrsch. Verw. Geb., Vol. 12, pp. 224-270, (1969).

[15] Marchi, E. - Some topics on equilibria, Transactions of the American Mathematical Society, Vol. 220, No. 493, pp. 87-102, (1976).

[16] Marchi, E. - The natural vector bundle of the set of product probability, Z. Wahrsch. Verw. Geb., Vol. 23, pp. 7-17, (1972).

[17] Marchi, E. - Toward some steps in game theory, Japan Journal of Applied Math., Vol. 3, No. 2, pp. 343-355, (1986b).

[18] Marchi, E.: Una nota acerca de los puntos e-estables perfectos y propios, Collectanea Mathematica, Vol. 39, pp. 9-19, (1988).

[19] Morillas, P. M.: Nuevos tópicos en cópulas, funciones de densidad y un fibrado vectorial relacionado, Tesis doctoral, Universidad Nacional de San Luis, San Luis, Argentina, (2003).

[20] Nelsen, R. B.: An Introduction to Copulas, Lectures Notes in Statistics, Vol. 139, Springer-Verlag New York, Inc., (1999).

[21] Schweizer, B. - Thirty years of copulas, Advances in Probability Distributions with Given Marginals, Eds. G. DalléAglio, S. Kotz, and G. Salinetti, Kluwer Academic Publishers, Dordrecht, pp. 13-50, (1991).

[22] Sklar, A. - Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris, Vol. 8, pp. 229-231, (1959).

 

E. Marchi
Instituto de Mateméatica Aplicada San Luis
UNSL-CONICET
Ejército de los Andes 950,
5700 San Luis
Argentina
e-mail : emarchi@unsl.edu.ar

and

P. M. Morillas
Instituto de Mateméatica Aplicada San Luis
UNSL-CONICET
Ejército de los Andes 950
5700 San Luis
Argentina
e-mail : morillas@unsl.edu.ar

 

Received : July 2005. Accepted : November 2005

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License