SciELO - Scientific Electronic Library Online

 
vol.24 issue2INERTIAL RELATIVITY - A FUNCTIONAL ANALYSIS REVIEWSTRATEGY FOR TO STABILIZE NON LINEAR SYSTEMS THROUGH DIRECTIONAL CONTROLS author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.24 no.2 Antofagasta Aug. 2005

http://dx.doi.org/10.4067/S0716-09172005000200004 

 

Proyecciones
Vol. 24, No 2, pp. 153-165, August 2005.
Universidad Católica del Norte
Antofagasta - Chile

 

Sβ−COMPACTNESS IN L-TOPOLOGICAL SPACES*

 

FU - GUI SHI

Beijing Institute of Technology, China

Correspondencia a :


ABSTRACT

In this paper, the notion of Sβ−compactness is introduced in Ltopological spaces by means of open βα−cover. It is a generalization of Lowen’s strong compactness, but it is different from Wang’s strong compactness. Ultra-compactness implies Sβ−compactness. Sβ−compactness implies fuzzy compactness. But in general N-compactness and Wang’s strong compactness need not imply Sβ−compactness.

Math. Subject Classification : 54A40

KeyWords and Phrases : L-topology, βα−cover, Sβ−compactness, β−cluster point


 

REFERENCES

[1] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968), 182—190.        [ Links ]

[2] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice, I, Nederl. Akad. Wetensch. indag. Math. 44(1982), 403—414.        [ Links ]

[3] T.E. Gantner et al., Compactness in fuzzy topological spaces, J.Math. Anal. Appl. 62(1978), 547—562.        [ Links ]

[4] G. Gierz, et al., A compendium of continuous lattices, Springer Verlag, Berlin, 1980.        [ Links ]

[5] J.A. Goguen, The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43(1973), 734—742.        [ Links ]

[6] T. Kubiák, The topological modification of the L-fuzzy unit interval, Chapter 11, in Applications of Category Theory to Fuzzy Subsets, S.E. Rodabaugh, E.P. Klement, U. Höhle, eds., 1992, Kluwer Academic Publishers, 275—305.        [ Links ]

[7] Z.F. Li, Compactness in fuzzy topological spaces, Chinese Kexue Tongbao 6(1983), 321-323.        [ Links ]

[8] Y.M. Liu, Compactness and Tychnoff Theorem in fuzzy topological spaces, Acta Mathematica Sinica 24(1981), 260-268.        [ Links ]

[9] Y.M. Liu, M.K. Luo, Fuzzy topology, World Scientific, Singapore, 1997.        [ Links ]

[10] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56(1976), 621-633.        [ Links ]

[11] R. Lowen, A comparision of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64(1978), 446—454.        [ Links ]

[12] F.-G. Shi, A new form of fuzzy β-compactness, submitted to Proyecciones, 2005.        [ Links ]

[13] F.-G. Shi, Theory of Lβ-nested sets and Lα-nest sets and its applications, Fuzzy Systems and Mathematics 4(1995), 65—72 (in Chinese).        [ Links ]

[14] F.-G. Shi, A new notion of fuzzy compactness in L-topological spaces, Information Sciences, 173(2005) 35—48.        [ Links ]

[15] F.-G. Shi, C.-Y. Zheng, O-convergence of fuzzy nets and its applications, Fuzzy Sets and Systems 140(2003), 499—507.        [ Links ]

[16] G.-J. Wang, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl. 94(1983), 1—23.        [ Links ]

[17] G.-J. Wang, Theory of L-fuzzy topological space, Shaanxi Normal University Press, Xian, 1988. (in Chinese).        [ Links ]

[18] D.-S. Zhao, The N-compactness in L-fuzzy topological spaces, J.Math. Anal. Appl. 128(1987), 64—70.        [ Links ]

Received : May 2005. Accepted : August 2005

*The project is supported by the National Natural Science Foundation of China (10371079) and the Basic Research Foundation of Beijing Institute of Technology.

Fu-Gui Shi

Department of Mathematics
School of Science
Beijing Institute of Technology
Beijing 100081
P.R. China
e-mail : fuguishi@bit.edu.cn or f.g.shi@263.net

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License