SciELO - Scientific Electronic Library Online

 
vol.22 número3LA (-5)-DEMI-RECONSTRUCTIBILITÉDES RELATIONS BINAIRES CONNEXES FINIES índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.22 n.3 Antofagasta dic. 2003

http://dx.doi.org/10.4067/S0716-09172003000300001 

Proyecciones
Vol. 22, N o 3, pp. 161-180, December 2003.
Universidad Católica del Norte
Antofagasta - Chile

AN EXTENSION OF THE POINCARÉ
COMPACTIFICATION AND A GEOMETRIC
INTERPRETATION

CLAUDIO VIDAL
Universidade Federal de Pernambuco - Brasil.
PEDRO GÓMEZ
Universidad Federal de Paraiba - Brasil

Abstract

Our purpose in this paper is to understand the geometry of the
Poincaré compactifcation and to apply this technique to prove that
there exists a Poincaré compactifcation of vector felds defned by
rational functions and of vector feld that are the quotient of some
power of polynomial. We will give also a global expressions for the
Poincaré vector feld associated. Furthermore, we summarize these
results proving that there exist a Poincaré vector feld for any vector
feld whose rate of growth at infnity of each component is not bigger
than a polynomial growth.

Mathematics Subject Classifcation : 34A34, 34C05, 34A99.

Key Words : Poincaré compactifcation, rational vector feld,
equilibrium solutions.

References

[1] Chazy, J. : Sur l'allure du mouvement dans le problµeme des trois corps quand le temps croit indµefniment. Ann. Ecole Norm. Sup. 39 (3), pp.29-130, (1922).

[2] Cima, A., and Llibre, J. :. Bounded polynomial vector felds. Trans.Amer. Math. Soc. 318, pp. 557-579, (1990).

[3] Cors, J., and Llibre, J. : The global flow of the parabolic restricted three body problem. Phd thesis, Universitat Autµonoma de Barcelona, (1994).

[4] Cors, J., and Llibre, J. : Qualitative study of the parabolic collision restricted three body problem. Contemporary Mathematics. 198, pp. 1-19, (1996).

[5] Delgado, J. ; Lacomba, E. A.; Llibre, J.; Pérez, E. : Poincaré compactifcation of the Kepler and the collinear three body problem. Seminaron Dynamical Systems (St. Petersburg, 1991), pp. 117{128, Progr. Nonlinear Diferential Equations Appl., 12, BirkhÄ auser, Basel, (1994).

[6] Delgado, J. ; Lacomba, E. A.; Llibre, J.; Pérez, E. : Poincaré compactifcation of the collinear three body problem. Hamiltonian systems and celestial mechanics (Guanajuato, 1991), 85{100, Adv. Ser. Nonlinear Dynam., 4, World Sci. Publishing, River Edge, NJ, (1993).

[7] Delgado, J. ; Lacomba, E. A. ; Llibre, J. ; Pérez, E. : Poincaré compactifcation of Hamiltonian polynomial vector fields. Hamiltonian dynamical systems (Cincinnati, OH, 1992), 99{114, IMA Vol. Math. Appl., 63, Springer, New York, (1995).

[8] González, E.: Generic properties of polynomial vector felds at infnity. Trans. Amer. Math. Soc. 143, pp. 201-222, (1969).

[9] Hegie, D. : A global regularization of the gravitational n-body problem. Cel. Mech. 10, pp. 217-241, (1974).

[10] Poincaré, H. : Mémoire sur les courbes défnies par une equationdiférentielle. J. Mathématiques (3), 7, pp. 375-422, (1881).

[11] Wang, Q. : Qualitative study of n-body problem: Untized momentum transformation and its application restricted isoceles three-body problem with positive energy, Space Dynamics and Celestial Mechanics, K.B. Bhantnagar, ed., pp. 61-69, (1986).

Received : November 2002.

Claudio Vidal
Departamento de Matemática
Universidade Federal de Pernambuco
Av. Prof. Luiz Freire, s/n
Cidade Universitária
Recife-PE
Brasil
e-mail : claudio@dmat.ufpe.br

and

Pedro Gómez
Departamento de Matemática
Universidade Federal da Paraiba
Cidade Universitária, Jo~ao Pessoa-PB
Brazil
e-mail : venegas@mat.ufpb.br

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons