SciELO - Scientific Electronic Library Online

 
vol.20 número3DIFFERENTIABILITY OF SOLUTIONS OF THE ABSTRACT CAUCHY PROBLEMON THE REPRESENTATION TYPE OF CERTAIN TRIVIAL EXTENSIONS índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) v.20 n.3 Antofagasta dic. 2001

http://dx.doi.org/10.4067/S0716-09172001000300004 

EXISTENCE OF SOLUTIONS FOR A SYSTEM
OF ELASTIC WAVE EQUATIONS

LUIS A. CORTÉS--VEGA *
Universidad de Bío - Bío - Chile

Abstract

A simple and short proof of the existence of solutions for the direct scattering problem associated with the system of elastic wave equations is shown.

Subjclass : Primary 35B40, 76Q05, Secondary 73D35, 73C02

Key words : Elastic waves, exterior domain, resonant frequencies

* This research was done with partial support by Diprode 000406--3 UBB-Chile
and CNPq--Brazil

References

[1] J. F Ahner, The exterior time harmonic elasticity problem with prescribed displacement vector on the boundary, Arch. Math. 27, pp. 106-111, (1976).        [ Links ]

[2] J.F Ahner and G.C. Hsiao, On the two dimensional exterior boundary value problems of elasticity, J. Apll. Math. 31, pp. 677-685, (1976).        [ Links ]

[3] M.A. Astaburruaga and R. Coimbra Charao, C. Fernández and G. Perla Menzala, Scattering Frequencies for a perturbed system of elastic wave equations, J. Math. Anal Appl. 219, pp. 52-75, (1998).         [ Links ]

[4] R. Coimbra Charao and G. Perla Menzala, Scattering Frequencies and a class of perturbed systems of elastic waves, Math. Meth. In the Appl. Sci. 19, pp. 699-716, (1996).        [ Links ]

[5] L. A. Cortés-Vega, The exerior time-harmonic elasticity problem with prescribed stress- traction operator on the boundary, J. Math.Anal. Appl. (submitted).        [ Links ]

[6] L. A. Cortés-Vega, " Frequências de espalhamento e a propagacão de ondas elásticas no exterior de um corpo tridimensional ''. Ph. D. Thesis, (In portuguesse). University of São Paulo, Outubro-2000.        [ Links ]

[7] G. Duvaut and J. L. Lions, "Les inequations in Mecanique et en Physique '', Dunond, Paris, (1972).        [ Links ]

[8] G. Fichera, " Existence theorems in elasticity '', Handbuch der Physik, Springer-Verlag, Berlin, Heidelberg, New York, (1973).        [ Links ]

[9] P. Hähner and G.C Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Prob. {bf 9, pp. 525-534, (1993).         [ Links ]

[10] P. Hähner, A uniqueness theorem in inverse scattering of elastic waves, IMA J. Of Appl. Math. 51, pp. 201-215, (1993).        [ Links ]

[11] V.D. Kupradze, " Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity'', Amsterdam, North-Holand, (1973).        [ Links ]

[12] J. T. Marti, " Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems '', Academic Press, New York, (1986).        [ Links ]

[13] M. Costabel and E.P. Stephan, Integral equations for transmission problems in linear elasticity, J. Int. Eq. and Appl. 2, pp. 211-223, (1996).        [ Links ]

[14] H. J-P. Morand and R. Ohayon, " Fluid-Structure interactions ''. John Wiley-Sons, New York, (1995).        [ Links ]

[15] J. Necas, " Les méthodos directes em théoria des équations elliptiques '', Masson, Paris, (1967).        [ Links ]

[16] Y-H. Pao, F. Santosa, W.W. Symes and C. Holland, eds., "Inverse problems of acoustic and elastic waves ''. SIAM, (1984).        [ Links ]

[17] O. Poisson, Calcul des pôles de résonance associés à la diffraction d'ondes acoustiques par un obstacle en dimension deux, C. R. Acad. Sci. Paris, I. 315, pp. 747-752, (1992).        [ Links ]

[18] A. G. Ramm, "Scattering by obstacles '', Riedel, Dordrecht, (1986).        [ Links ]

[19] R. T. Seeley, Integral equations depending analytycally on parameter, Indag. Math. {bf 24, pp. 434-442, (1962).        [ Links ]

[20] S. Steinberg, Meromorphic families of compact operators, Arch. Rational. Mech. Anal. 31, pp. 372-379, (1968).         [ Links ]

Received : July, 2001.

Luis Cortés Vega
Departamento de Matemáticas
Facultad de Ciencias
Universidad del Bío-Bío
Casilla 5-C
Concepción
Chile
email : lcortes@triton.ciencias.ubiobio.cl

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons