SciELO - Scientific Electronic Library Online

 
vol.19 issue3DIBARIC ALGEBRASON THE APPROXIMATE SOLUTION OF IMPLICIT FUNCTIONS USING THE STEFFENSEN METHOD author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.19 no.3 Antofagasta Dec. 2000

http://dx.doi.org/10.4067/S0716-09172000000300004 

Proyecciones
Vol. 19, Nº 3, pp. 271-289, December 2000.
Universidad Católica del Norte
Antofagasta - Chile

 

DISEÑO ÓPTIMO Y 
HOMOGENIZACIÓN

 

SERGIO GUTIÉRREZ
Pontificia Universidad Católica de Chile, Chile

 

 

 

Bibliografía

 

1. J. M. Ball: Constitutive Inequalities and Existence Theorems in Nonlinear Elastostatics. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. I. ed. R. J. Knops, Pitman Res. Notes Math. 17, 187-241 (1977).         [ Links ]

2. J. M. Ball: A Version of the Fundamental Theorem for Young Measures. PDEs and Continuum Models of Phase Transitions. Lecture Notes in Physics vol. 344, eds. M. Rascle et al. Springer-Verlag (1989).         [ Links ]

3. G. Dal Maso: An Introduction to   -Convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser, Boston (1993).         [ Links ]

4. G. Francfort y G. Milton: Sets of Conductivity and Elasticity Tensors Stable under Lamination. Comm. Pure Appl. Math. XLVII, 257-279 (1994).         [ Links ]

5. G. Francfort y F. Murat: Homogenization and Optimal Bounds in Linear Elasticity. Arch. Rat. Mech. Anal. 94, 307-334 (1986).         [ Links ]

6. G. Geymonat, S. Müller y N. Triantafyllidis: Homogenization of Nonlinearly Elastic Materials, Mic roscopic Bifurcation and Macroscopic Loss of Rank-One Convexity. Arch. Rational Mech. Anal. 122, 231-290 (1993).         [ Links ]

7. M. Gurtin: The Linear Theory of Elasticity. Handbuch der Physik Vol. VIa/2. Springer-Verlag (1972).         [ Links ]

8. S. Gutiérrez: Laminations in Linearized Elasticity: The Isotropic Non-very Strongly Elliptic Case. J. Elasticity 53, 215-256 (1998).         [ Links ]

9. Z. Hashin y S. Shtrikman: A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Applied Physics 33, 3125-3131 (1962).         [ Links ]

10. H. Le DRet: An Example of H1-umboundedness of Solutions to Strongly Elliptic Systems of Partial Differential Equations in a Laminated Geometry. Proc. Roy. Soc. Edinburgh 105A, 77-82 (1987).         [ Links ]

11. F. Murat: H-convergence. Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger (1977).         [ Links ]

12. F. Murat y L. Tartar: Calculus of Variations and Homogenization. Collection d'Etudes de Electricité de France (1983).         [ Links ]

13. P. Pedregal: Parametrized Measures and Variational Principles. Progress in Nonlinear Differential Equations and their Applications, vol 30, Birkhäuser, Basel (1997).         [ Links ]

14. S. Spagnolo: Sulla convergenza di soluzioni di equizioni parabiliche ed ellitiche. Ann. Sc. Norm. Sup. di Pisa Cl. di Scienze 22, 577-597 (1968).         [ Links ]

15. L. Tartar: Cours Peccot, Collège de France (1977).         [ Links ]

16. L. Tartar: Compensated Compactness and Applications to Partial Differential Equations. Nonlinear Analysis and Mechanics: Heriot Watt Symposium. vol. IV, ed. R.J. Knops. Research Notes in Mathematics 39, Pitman 136-212 (1979).         [ Links ]

17. L. Tartar: Homogenization, Compensated Compactness and H-Measures. CBMS-NSF Conference, Santa Cruz, June 1993. Notas en preparación.         [ Links ]

 

Received: October 2000.

 

Sergio Gutiérrez
Centro Anestoc
Facultad de Matemáticas
Pontificia Universidad Católica de Chile
Casilla 306
Santiago 22
Chile
e-mail : sgutierr@mat.puc.cl

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License