SciELO - Scientific Electronic Library Online

 
vol.19 issue3SUR LE SPECTRE D'UN OPÉRATEUR QUASILINÉAIRE ELLIPTIQUE "DÉGÉNÉRÉ" author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Proyecciones (Antofagasta) vol.19 no.3 Antofagasta Dec. 2000

http://dx.doi.org/10.4067/S0716-09172000000300001 

Proyecciones
Vol. 19, Nº3, pp. 207-226, December 2000.
Universidad Católica del Norte
Antofagasta - Chile

 

GAIN OF REGULARITY FOR AN 
NONLINEAR DISPERSIVE EQUATION 
KORTEWEG - DE VRIES - BURGERS TYPE *

 

OCTAVIO PAULO VERA VILLAGRÁN
Universidad Católica de la Santísima Concepción - Chile

 

 

Keywords and Phrases : Evolution equations, Lions - Aubin Theorem. Weighted Sobolev Space.

 

References 

[1] J. Bona, G. Ponce, J. C. Saut and M. M. Tom. A model system for strong interaction between internal solitary waves, Comm. Math. Phys. Appl. Math., 143, pp. 287-213, (1992).         [ Links ]

[2] J. Bona and R. Scott. Solutions of the Korteweg - de Vries equation in fractional order Sobolev space, Duke Math. J. 43, 87-99, (1976).         [ Links ]

[3] J. Bona and Smith. The initial value problem for the Korteweg - de Vries equation, Philos. Trans. Royal Soc. London, Ser. A, 278, pp. 555-601, (1975).         [ Links ]

[4] J. Bona and J. C. Saut. Dispersive blow-up of solutions of generalized Korteweg - de Vries equation, Journal of Diff. equations, 103, pp. 3-57, (1993).         [ Links ]

[5] H. Cai. Dispersive smoothing effect for generalized and high order KdV type equations. Journal of Diff. equations., 136, pp. 191-221, (1997).         [ Links ]

[6] A. Cohen. Solutions of the Korteweg - de Vries equations from irregular data, Duke Math., J., Vol. 45, springer, pp. 149-181, (1991).         [ Links ]

[7] W. Craig and J. Goodman. Linear dispersive equations of Airy Type, J. Diff. equations., Vol. 87, pp. 38-61, (1990).         [ Links ]

[8] W. Craig, T. Kappeler and W. Strauss. Infinite gain of regularity for dispersive evolution equations, Microlocal Analysis and Nonlinear waves, I.M.A., Vol. 30, springer, pp. 47-50, (1991).         [ Links ]

[9] W. Craig, T. Kappeler and W. Strauss. Gain of regularity for equations of Korteweg - de Vries type, Ann. Inst. Henri Poincaré, Vol. 9, Nro. 2, pp. 147-186, (1992).         [ Links ]

[10] P. Constantin and J. C. Saut. Local smoothing properties of dispersive equations, Journal A.M.S., Nro. 1, pp. 413-429, (1988).         [ Links ]

[11] J. Ginibre and G. Velo. Conmutator expansions and smoothing properties of generalized Benjamin - Ono equations. Ann. Inst. Henri Poincaré, Vol. 51, Nro. 2, pp. 221-229, (1989).         [ Links ]

[12] H. Hayashi, K. Nakamitsu and M. Tsutsumim. On solutions on the initial value problem for the nonlinear Schrodinger equations in One Space Dimension, Math. Z., Vol. 192, pp. 637-650, (1986).         [ Links ]

[13] N. Hyashi, K. Nakamitsu and M. Tsutsumi. On solutions of the initial value problem for nonlinear Schrodinger equations, J. of Funct. Anal., Vo. 71, pp. 218-245, (1987).         [ Links ]

[14] N. Hayashi and T. Ozawa. Smoothing effect for some Schrodinger equations, J. of Funct. Anal., Vol 85, pp. 307-348, (1989).         [ Links ]

[15] T. Kato. Quasilinear equations of evolutions with applications to partial differential equations, LEcture notes in mathematics. Springer-Verlag, Vol. 448, pp. 27-50, (1975).         [ Links ]

[16] T. Kato. On the Cauchy problem for the (generalized) Korteweg - de Vries equations, Adv. in Math. Suppl. Studies, Studies in Appl. Math., Vol. 8, pp. 93-128, (1983).         [ Links ]

[17] T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Applied Math., Vol. 41, pp. 891-907, (1988).         [ Links ]

[18] C. Kenig, G. Ponce and L. Vega. On the (generalized) Korteweg - de Vries equation, Duke Math. J., Vol. 59 (3), pp. 585-610, (1989).         [ Links ]

[19] C. Kenig, G. Ponce and L. Vega. Oscillatory integrals and regularity equations, Indiana Univ. Math., J., Vol. 40, pp. 33-69, (1991).         [ Links ]

[20] S. N. Kruzhkov and A. V. Faminskii. Generalized solutions to the Cauchy problem for the Korteweg - de Vries equations, Math. U.S.S.R. Sbornik, Vol. 78, pp. 93-138, (1984).         [ Links ]

[21] G. Ponce. Regularity of solutions to nonlinear dispersive equations, J. Diff. Eq., Vol. 78, pp. 122-135, (1989).         [ Links ]

[22] J. C. Saut and R. Temam. Remark on the Korteweg - de Vries equation, Israel J. Math., Vol. 24, pp. 78-87, (1976).         [ Links ]

[23] P. Sjolin. Regularity of solutions to the Schrodinger equation. Duke Math. J., Vol. 55, pp. 699-715, (1987).         [ Links ]

[24] R. Temam. Sur un probleme non-lineaire, J. Math. Pures Appl., Vol. 48, pp. 159-172, (1969).         [ Links ]

 

Received : December 1999.

 

Octavio Vera Villagrán
Facultad de Ingeniería
Universidad Católica de la Santísima Concepción
Paicaví 3000
Concepción
Chile
e-mail : overa@david.ucsc.cl

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License