SciELO - Scientific Electronic Library Online

 
vol.37 número1Productividad, consumo y eficiencia biológica en vacas Frisón Neozelandés y F1 (Jersey-Frisón Neozelandés) paridas a fines de invierno en la X Región, ChileRiesgo de introducción de la enfermedad de Newcastle a Chile por la importación de avestruces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Archivos de medicina veterinaria

versión impresa ISSN 0301-732X

Arch. med. vet. v.37 n.1 Valdivia  2005

http://dx.doi.org/10.4067/S0301-732X2005000100007 

Arch. Med. Vet., Vol. XXXVII Nº 1, 2004, pp. 49-54

ARTICULO ORIGINAL

 

Estudio morfológico y morfométrico del músculo oblicuo dorsal del perro

Morphologic and morphometric study of the musculus obliquus dorsalis of the dog

 

J Vivo *, J L Morales, A Diz, F Miró, A M Galisteo, E Agüera.

* Departamento de Anatomía y Anatomía Patológica Comparadas, Campus Rabanales, Universidad de Córdoba, Ctra Madrid-Cádiz Km 396, 14014 Córdoba. España. E-mail: anlviroj@uco.es, Fax: int +34 957218682, Teléfono: int +34 957218675.


Summary

In the present investigation, the dorsal oblique muscle of the right ocular globe was removed from six adult dogs weighing 40-50 kg and analyzed by light microscopy. Muscle samples were taken from the central portion of the muscle belly, subsequently ultrafrozen, cut and stained with m-ATPase at pH 4.6. Fibers were classified as type I or type II according to their reaction to the m-ATPase and detailed morphologic and morphometric studies were made. The muscles showed two clearly distinct layers, a central layer and a peripheral layer, mainly composed of type II fibers. The fibers in the central layer were larger in size than those in the peripheral layer. The peculiar stratigraphy of the dorsal oblique muscle should be taken into account when performing analyses of this muscle and investigating the significance of the fiber types it contains.

Keywords: extraocular muscles, dorsal oblique muscle, fibers, dog.

Resumen

En el presente trabajo se han extraído, de los globos oculares derechos, de seis perros adultos de 40-50 kilogramos de peso, los músculos oblicuos dorsales y analizados con microscopia de luz. Las muestras musculares para su análisis se tomaron de la porción central del vientre muscular y fueron ultracongeladas, cortadas y teñidas por la técnica de m-ATPasa a pH 4,6. Las fibras se clasificaron en tipo I y tipo II en virtud a su reacción frente a la m-ATPasa, realizándose un detallado estudio morfológico y morfométrico. Los músculos presentaron dos estratos netamente diferenciados, uno central y otro periférico, compuestos mayoritariamente por fibras tipo II. Las fibras del estrato central presentaron un mayor tamaño que las correspondientes del estrato periférico. La peculiar estratigrafía del músculo oblicuo dorsal debería tenerse en consideración al analizar este músculo e investigar el significado de los tipos fibrilares que contiene.

Palabras clave: músculos extraoculares, oblicuo dorsal, fibras, perro.


INTRODUCCION

Los músculos extraoculares (figura 1), conocidos también como músculos oculomotores o del globo ocular, son los encargados de controlar el movimiento del ojo. Son cuatro músculos rectos que mueven el ojo hacia arriba, abajo, a la derecha y a la izquierda; dos músculos oblicuos que rotan el globo ocular en torno del eje visual y un músculo retractor que tiene la capacidad de retraer el ojo.

Estos músculos, que son estriados esqueléticos, presentan características especiales que los hacen sensiblemente diferentes a los restantes músculos estriados esqueléticos del organismo. Son los de contracción más rápida del cuerpo (Cooper y Eccles 1930), ya que están integrados de forma mayoritaria por unidades motoras de contracción rápida (Close y Luft 1973), donde cada neurona inerva a un número muy escaso de fibras, llegando la proporción entre fibra nerviosa y muscular a ser muy alta, alcanzando incluso la relación 1/1 (Sarnat 1983). Tienen una gran variación en el tamaño de sus fibras, y una respuesta patológica muy limitada (Ringel y col 1978).

La unidad funcional del tejido muscular es la fibra muscular (miocito), que es una célula multinucleada, de gran tamaño y que tiene la capacidad de contraerse y así lograr un acortamiento en su longitud. Para clasificar las fibras de los músculos extraoculares se emplean diversos sistemas: uno obedece al tamaño y apariencia que presentan a diferentes técnicas histológicas; otro atendiendo al tipo de inervación y otro basado en la técnica de m-ATPasa y según parámetros empleados usualmente para el músculo esquelético apendicular (Floquet y col 1990, Gueritaud y col 1987, Galisteo y col 1994).

 

 
FIGURA 1. Músculos del ojo visto desde detrás del globo ocular. 1, m. rectus dorsalis; 2, m. rectus lateralis; 3 m. rectus ventralis; 4, m. rectus medialis; 5, m obliquus ventralis; 6, m. obliquus dorsalis; 7, m. retractor bulbi; 8, nervio óptico.
Extraocular muscles shown from behind the ocular globe. 1, m. rectus dorsalis; 2, m. rectus lateralis; 3 m. rectus ventralis; 4, m. rectus medialis; 5, m obliquus ventralis; 6, m. obliquus dorsalis; 7, m. retractor bulbi; 8, nerve opticus.

 

Todos estos estudios se han llevado a cabo en el hombre (Ringel y col 1978, Floquet y col 1990), en primates (Durston 1974), en la rata (Hanson y Lennerstrand 1977), en el gato (Hanson y Lennerstrand 1977, Gueritaud y col 1986), en la oveja (Harker 1972, Browne 1976), palomas (McVean y col 1987) y algunos peces (Witalinski y Labuda 1982). En el perro, únicamente Galisteo y col (1994) analizaron las características histoquímicas de algunos músculos extraoculares dependientes de los nervios oculomotor y abducente.

Con la m-ATPasa ácida a pH 4,6 se distinguen dos tipos de fibras en el musculus obliquus dorsalis, unas oscuras (tipo I) y otras claras (tipo II). Las fibras de tipo I tienen características estructurales y bioquímicas adecuadas para resistir la fatiga, son fibras de contracción lenta, pequeño tamaño, muy capilarizadas, ricas en mioglobina y mitocondrias y con alto contenido de enzimas oxidativas. Todo ello las faculta para rendir una alta tasa energética desde rutas aeróbicas, utilizando substratos extracelulares (glucosa y ácidos grasos libres en sangre), lo que justifica su capacidad de resistencia a la fatiga. La contracción secuenciada y alternativa, fundamentalmente de este tipo de fibras, origina el característico tono muscular que poseen los músculos cuando están en reposo.

Las fibras de tipo II son de contracción rápida y explosiva, con abundantes miofilamentos, más adecuadas para ejercicios de corta duración y alta intensidad. Su producción energética se opera por rutas anaeróbicas, utilizando combustibles intracelulares. Tienen un potencial más alto de rendimiento y un mayor consumo, por lo que su fatiga se produce más rápidamente y la resistencia está limitada.

Con estas premisas, este trabajo pretende describir las características morfológicas y morfométricas (número, diámetro, área y densidad) de las fibras del músculo extraocular oblicuo dorsal del perro, implicado en la rotación y junto al músculo oblicuo ventral en la estabilización del globo ocular respecto al eje visual.

MATERIAL Y METODOS

Se han utilizado en este estudio seis perros sanos adultos de raza pastor alemán de entre 40-50 kg de peso, obtenidos del lazareto municipal donde fueron eutanasiados por sobredosis anestésica, vía intravenosa, con tiopental (Tiobarbital®) y que posteriormente utilizamos para nuestra experiencia. Tras su sacrificio, se les han extraído el globo ocular y estructuras retrobulbares derechas, aislándose el musculus obliquus dorsalis que es el único músculo inervado por el nervio troclear.

De los músculos se seleccionó la porción central del vientre muscular que fue bañada en OCT embedding compound para congelación de tejidos (Tissue Tek, Miles Sci. USA) y sumergida durante 30 segundos en isopentano (2-metilbutano) enfriado en nitrógeno líquido hasta –160 ºC aproximadamente (Dubowitz y Brooke 1973). Se practicaron cortes transversales (10 μm), seriados en un criostato a –20 ºC que fueron almacenados sobre el portaobjetos a –80 ºC. Posteriormente fueron teñidos por la técnica de miosín adenosín trifosfatasa (m-ATPasa) tras preincubación ácida (pH 4,6) (Dubowitz y Brooke 1973). Estos cortes fueron digitalizados a 16x, con los que se reconstruyó la sección completa obtenida del músculo. Con el software Sci Image (1998 Scion corporation 82 Worman’s Mill Court Suite H Frederick, Maryland 21703), sobre esta reconstrucción se evaluó su área y se contó el número total de las fibras existentes de cada tipo. Sobre las imágenes digitalizadas, se procedió a determinar el área, diámetro mayor y diámetro menor de las fibras musculares existentes en el 20% de la superficie total del músculo elegida en cuadros al azar: las oscuras (Tipo I) y las claras (Tipo II). Con el programa Microsoft Excel® se determinó, para cada músculo y para cada tipo de fibra, su proporción, así como su área y diámetro medio, área ocupada por las fibras, área relativa de las fibras respecto al área del músculo y densidad (número de fibras por mm2). La superficie no ocupada por fibras, formada fundamentalmente por grasa, tejido conectivo, vasos y tejido nervioso, es el tejido inespecífico intersticial. Para cada músculo y en las variables que procediera se calculó su desviación típicaintra. Para el conjunto de los músculos estudiados se estableció la media de cada variable así como la desviación típica intra e inter. Se realizó un análisis “t” de Student para demostrar posibles diferencias para las variables entre las fibras tipo I y tipo II en cada uno de los estratos.

RESULTADOS

En el músculo oblicuo dorsal la preincubación a pH 4,6 fue la que permitió una mejor discriminación de las fibras musculares con la técnica m-ATPasa ácida, distinguiéndose fácilmente las fibras tipo I (oscuras) y II (claras). En este músculo se ponen de manifiesto dos estratos netamente diferenciados, uno de situación central y otro situado más periféricamente (figura 2).

 

 
FIGURA 2. Sección transversal del musculus obliquus dorsalis. La línea trazada marca el límite entre el estrato central y periférico.
Transversal section of the musculus obliquus dorsalis. The black line shows the limit between the peripherical and the central layer.

 

Estos dos estratos, al manifestar diferencias netas entre sí, son analizados por separado. Los músculos analizados presentaron un área media total de 9,95 ± 4,01 mm2, de la que el 44,8 ± 4,4% se corresponde con la porción central. Se presentan los resultados separados por estratos en la cuadro 1.

 

CUADRO 1. Medias y desviaciones típicas para los dos tipos de fibras en cada una de las variables analizadas en cada una de las porciones musculares.
Means and standard deviations of each in variable analyzed, the two fiber types in the central and peripherical layers of the dorsal oblique muscle.
 
Estrato Central
 
Tipo 1
DE-inter
DE-intra
Tipo 2
DE-inter
DE-intra
Total
DE-inter
DE-intra
Número
402.00
112.62
 -
3406.00
995.32
 -
3808.00
1104.82***
 -
% fibras
10.60
0.82
 -
89.40
0.82
 -
100.00
0.00***
 -
Diámetro (μm2)
39.81
2.56
7.36
37.24
3.18
7.36
37.51
3.09***
7.34
Area fibras (μm2)
1190.18
162.37
404.38
1050.72
168.95
395.58
1065.58
167.06***
403.43
Area total fibras (μm2)
483657.20
174446.53
 -
3638381.19
1397328.66
 -
4122038.39
1567230.20***
 -
Area rel. fibras (%)
11.05
1.32
 -
81.83
1.64
 -
92.88
2.35***
 -
Densidad (n°/μm2)
95.03
24.52
 -
793.20
134.74
 -
888.22
159.25***
 -
 
-
Estrato Periferico
Tipo 1
DE-inter
DE-intra
Tipo 2
DE-inter
DE-intra
Total
DE-inter
DE-intra
Número
1396.67
478.64
 -
5936.33
2306.92
 -
7333.00
2750.42***
 -
% fibras
19.32
3.11
 -
80.68
3.11
 -
100.00
0.00***
 -
Diámetro (μm2)
20.83
1.61
6.25
27.52
2.00
 -
26.24
2.12***
6.80
Area fibras (μm2)
349.67
46.28
214.94
579.04
90.22
5.63
535.62
88.22***
263.31
Area total fibras (μm2)
481341.41
146751.67
 -
3441140.33
1363352.72
247.23
1497700.47
***
 -
Area rel. fibras (%)
9.06
1.27
 -
63.19
10.80
3922481.74
72.25
10.74***
 -
Densidad (n°/μm2)
263.10
59.97
 -
1090.79
54.93
 
1353.88
9.85***
 -

DE inter: desviación típica de la media; DE intra: media de las desviaciones típicas de cada músculo.
*, **, ***: significación estadística con la prueba t de Student a P < 0,05, P < 0,01 y P < 0,001.
DE inter: standard deviation of the mean; DE intra: mean of the standard deviations of each muscle.
*, **, ***: statistical significance with Student’s t-test at P < 0,05, P < 0,01 y P < 0,001.

 

El estrato central está compuesto mayoritariamente por fibras tipo II que representan el 89,40% del total, si bien las de tipo I, que representa sólo el 19,60%, son, de media, sensiblemente de mayor tamaño, aunque ambos tipos presentan parecida heterogeneidad. El espectro de tamaño de ambos tipos de fibras presenta una distribución unimodal, con un rango para las fibras tipo I que oscila de 25 μm hasta 59 μm, con una mayor concentración de fibras entre 39-41 μm. En las fibras tipo II el rango es algo mayor, extendiéndose desde 17 μm hasta 63 μm, presentando el mayor porcentaje de fibras entre 37-39 μm. El área relativa ocupada por las fibras de tipo II supone el 81,33% de su superficie, que es mucho mayor que la ocupada por las de tipo I, que sólo alcanza el 11,05%. Como consecuencia, la densidad de las fibras tipo II es mucho mayor que la de las fibras tipo I (figura 3).

 

FIGURA 3. Histogramas del diámetro (μm) de las fibras tipo I y tipo II en el estrato central y periférico.
Histograms showing the diameters of type I and II fibers in the peripherical and the central layers.

 

El estrato periférico también se compone mayoritariamente de fibras tipo II (80,68%), aunque relativamente hay más fibras de tipo I (19,32%) que en el estrato central. El tamaño medio de ambos tipos de fibras es pequeño, mostrando parecida heterogeneidad. Las fibras tipo II son, de media, de mayor tamaño que las de tipo I, aunque ambas son considerablemente menores que las del estrato central. Su espectro de tamaño presenta, al igual que en el estrato central, una distribución unimodal, con un rango para las fibras tipo I entre 9 μm y 43 μm con un pico máximo entre 15-17 μm, por el contrario, el rango para las fibras tipo II está comprendido entre 15 μm y 47 μm, con una mayor concentración de fibras entre 23-25 μm. El área relativa de las fibras tipo I representa el 9,06% de la superficie de este estrato, siendo similar a la que ocupa en el estrato central; sin embargo, el área que ocupan las fibras tipo II (63,19%) es sensiblemente menor a la que ocupa el mismo tipo de fibras en el estrato central. El tejido inespecífico intersticial, que es la parte del músculo no ocupada por fibras, representa prácticamente la cuarta parte de este estrato muscular, siendo netamente mayor que la que ocupa en el estrato central (figura 3).

DISCUSION

Son muchos los autores que han clasificado a las fibras de los músculos extraoculares en función de sus respectivos patrones reticulares en Fine, Coarse y Granular frente a técnicas histológicas (Hematoxilina Eosina, Tricrómico modificado) e histoquímicas (enzimáticas) (Durston 1974, Ringel y col 1978). Otros han atendido al tipo de inervación que poseen las fibras y las clasifican en Fibras Simplemente Inervadas (SIF) y en Fibras Múltiplemente Inervadas (MIF) en función del número y tipo de terminaciones nerviosas que presentan, llegándose incluso a diferenciar dos tipos MIF y tres tipos SIF en función de otras características como el diámetro fibrilar, riqueza mitocondrial, desarrollo del retículo sarcoplásmico y tamaño miofibrilar, medidas estas aplicadas en su mayoría mediante microscopia electrónica de transmisión (TEM) o incluso por su situación dentro del músculo (Pachter y col 1976ª, Pachter 1982, Morgan y Proske 1984, Jacoby y col 1989). Con la técnica de m-ATPasa también hay autores que han dividido a los músculos oculomotores en fibras tipo I y tipo II (Gueritaud y col 1986, Floquet y col 1990, Galisteo y col 1994) e incluso otros las han correlacionado con otras clasificaciones (Ringel y col 1978, Reichman y Srihari 1983).

Los músculos oblicuos dorsales analizados del perro presentaron dos estratos netamente separados, uno central y otro periférico. La porción central se asemeja a un patrón en mosaico característico del músculo esquelético, donde se pueden diferenciar con la técnica ATPasa los tipos fibrilares I y II; sin embargo, el estrato periférico no presenta este aspecto, sino que está integrado por fibras más irregulares, si bien se pueden diferenciar igualmente los dos tipos de fibras. Dicha distribución ya ha sido descrita con anterioridad, para este músculo, en el hombre (Ringel y col 1978) y en la rata (Carry y col 1982). En el perro esta distribución ha sido descrita para los músculos recto lateral y medial (Galisteo y col 1994).

Los valores encontrados por nosotros para el músculo oblicuo dorsal, referentes a la proporción de fibras tipo I y tipo II en el estrato central, resultan parecidos a los obtenidos en el hombre (Ringel y col 1978), pero no con los determinados en la rata (Carry y col 1982), ya que estos autores no observan, en este estrato, ninguna fibra de tipo I. En el estrato periférico los valores son más dispares, pues mientras nosotros señalamos un 19,32% de fibras tipo I, Ringel y col (1978) obtiene sólo el 0,8% y Carry y col (1982) el 0%.

El tamaño de las fibras fue muy variable, observándose las de mayor tamaño en el estrato central y las de menor tamaño en el estrato periférico, si bien en este último las disminución fue gradual desde el centro a la periferia. Esta variabilidad de tamaño ya fue señalada como una de las características principales de estos músculos (Ringel y col 1978), que da, en el hombre, un rango de tamaño para las tipo I de 13-35 μm y para las tipo II de 10-38 μm similar al señalado, en la rata, por Carry y col (1982) y mayor al determinado por Pachter (1983). Debemos destacar que las fibras tipo I del estrato central son de mayor tamaño que las de tipo II, ocurriendo lo contrario en el estrato periférico; pensamos que podría ser debido para compensar el escaso número de las fibras tipo I en el estrato central, puesto que el área relativa de este tipo fibrilar es similar en ambos estratos.

El área relativa de la muestra ocupada por cada tipo fibrilar es una variable indicativa de la funcionalidad muscular, al menos en la musculatura de los miembros (Sullivan y Armstrong 1978). El área relativa ocupada por las fibras tipo I (contracción lenta) siempre fue menor que la ocupada por las fibras tipo II (contracción rápida), lo que nos permite catalogar a este músculo de rápido (Cooper y Eccles 1930).

Nuestros resultados tienen cierta variabilidad con los valores señalados por Galisteo y col (1994) para los músculos recto lateral y recto medial del perro, pues hemos estimado, en ambos estratos, un mayor porcentaje para las fibras tipo II y un menor porcentaje de las fibras tipo I. El tamaño de las fibras es mayor en el estrato central que en el periférico, siendo el detectado por nosotros considerablemente mayor, en ambos estratos, que el señalado por estos autores, si bien coincidimos con ellos en que el tamaño de las fibras tipo I del estrato central es mayor que las fibras tipo II. En nuestro estudio, el área relativa de las fibras tipo II, en ambos estratos, es aproximadamente 10-20% mayor, siendo los porcentajes muy similares para las fibras de tipo I en el estrato central y ligeramente superiores a los determinados por Galisteo y col (1994) para el músculo recto medial en el estrato periférico.

En conclusión, los resultados obtenidos en nuestro estudio muestran la peculiar estratigrafía, central y periférica, del músculo oblicuo dorsal del perro, predominando en ambos estratos las fibras tipo II sobre las de tipo I. Estos hechos deberán tenerse en cuenta ante las posibles alteraciones que puedan sufrir los músculos extraoculares en determinadas enfermedades.

REFERENCIAS

Browne JS. 1976. The contractile properties of slow fibres in sheep extraocular muscle. Am J Ophthalmol Vis Sci 18, 303-306.         [ Links ]

Buchtal F. 1961. The general concept of motor unit. A.N.M.D. Res Procs 30, 3-30.        [ Links ]

Carry MR, K O’keefe, PS Ringel. 1982. Histochemistry of mouse extraocular muscles. Anat Embryol 164, 403-412.        [ Links ]

Close RJ, AR Luft. 1973. Dynamic properties of inferior rectus muscle of the rat. J Physiol 236, 259-270.        [ Links ]

Cooper S, JC Eccles. 1930. The isometric response of mammalian muscles. J Physiol 69, 377-305.         [ Links ]

Dubowitz V, MH Brooke. 1973. Muscle biopsy: a modern approach. WB Saunders, London.         [ Links ]

Durston JH. 1974. Histochemistry of primate extraocular muscles and the changes of denervation. Brit J Ophthalmol 58, 193-216.         [ Links ]

Floquet J, P Becker, A Raspiller, MC Bazard, DJ Berrod. 1990. Etude histoenzimologique de la parte anterieur du muscle droit interne. Bull Soc Ophthalmol Fr 90, 69-71.        [ Links ]

Galisteo AM, JL Morales, A Díz, AL Serrano. 1994. Características histoquímicas y morfométricas de algunos músculos extraoculares del perro. Anat Histol Embryol 23, 309-319.        [ Links ]

Gueritaud JP, G Bossavit, L Jami, D Thiesson, S Tyc-Dumont. 1986. Histochemical identification of two fibre types in the retractor bulbi muscle of the cat. Neurosci Lett 66, 346-350.         [ Links ]

Hanson J, G Lennerstrand. 1977. Contractile and histochemical properties of the inferior oblique muscle in the rat and in the cat. Acta Ophthalmol 55, 88-102.         [ Links ]

Harker DW. 1972. The structure and innervation of sheep superior and levator palpebrae extraocular muscles. 1: Extrafusal muscle fíbers. Invest Ophthalmol 11, 156-169.         [ Links ]

Jacoby J, DJ Chiarandini, E Stefani. 1989. Electrical properties and innervation of fibers in the orbital layer of the rat extraocular muscles. J Neurophysiol 61, 116-125.        [ Links ]

McVean A, J Stelling, A Rowlerson. 1987. Muscle fibre types in the external eye muscles of the pigeon, Columba Libia. J Anat 154, 91-101.         [ Links ]

Morgan DL, V Proske. 1984. Vertebrate slow muscle: its structure, pattern of innervation and mechanical properties. Phys Rev 64, 103-169.        [ Links ]

Pachter BR, J Davidowitz, GM Breinin. 1976a. Morphological fiber types of retractor bulbi muscle in mouse and rat. Invest Ophthalmol 15, 654-657.        [ Links ]

Pachter BR. 1982. Fiber composition of the superior rectus extraocular muscle of the rhesus macaque. J Morphol 174, 237-250.         [ Links ]

Pachter BR. 1983. Rat extraocular muscle: 1. Three-dimensional cytoarchitecture, component fibre population and innervation. J Anat 137, 143-159.        [ Links ]

Reichman H, T Srihari. 1983. Enzyme activities: Histochemistry and myosin light chain pattern in extraocular muscle of rabbit. Histochem 78, 111-120.         [ Links ]

Ringel SP, WB Wilson, MT Barden, KK Kaiser. 1978. Histochemistry of human extraocular muscle. Arch Ophthalmol 96, 1067-1072.         [ Links ]

Sarnat HB. 1983. Muscle pathology and histochemistry. American Society of Clinical Pathology Press. Chicago.         [ Links ]

Sullivan T, R Armstrong. 1978. Rat locomotory muscle fibre activity during trotting and galloping. J Appl Physiol 44, 358-363.         [ Links ]

Witalinski W, H Labuda. 1982. Extraocular muscles in the lamprey, Lampetra Fluviatilis L. Acta Anat 114, 165-176.        [ Links ]

 

Aceptado: 03.01.05.

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons