SciELO - Scientific Electronic Library Online

vol.18 número4Bioindicators of soil quality of open shrubland and vineyardsHeavy metals uptake and translocation by lettuce and spinach grown on a metal-contaminated soil índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Journal of soil science and plant nutrition

versión On-line ISSN 0718-9516


MUTUMBA, Filipe Adriano et al. Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes. J. Soil Sci. Plant Nutr. [online]. 2018, vol.18, n.4, pp.1080-1096. ISSN 0718-9516.

A greenhouse experiment was carried out to assess the effect of the inoculation with rhizobacterial strains on the tolerance to water stress in wheat genotypes (Triticum aestivum L.) under two different water regimes. A drought resistant (Fontagro 8) and a susceptible (Fontagro 98) genotype were studied. Soil water content was kept at 100% and 45% field capacity. The treatments were inoculations with AG-70 (Bacillus sp.), AG-54 (Pseudomonas sp.), and a mixture of both (AG-70 + AG-54); a control treatment consisting of an autoclaved nutritive solution. When applied to Fontagro 8 genotype, the AG-70 + AG-54 treatment resulted in a higher increase in shoot (88%) and root dry weight (211%) compared to the control under drought conditions. The same treatment applied on the susceptible genotype (Fontagro 98) resulted in increases of 73% and 129% in shoot and root dry weight, respectively. In addition, the inoculated plants showed significant increases in root length, stomatal conductance and chlorophyll index. The AG-54 and AG-70 treatments increased NPK contents in the drought-resistant genotype, while the AG-54 and AG-70 + AG-54 treatments increased the P content in the susceptible genotype. The treatments that showed the most positive effects on the biological quality parameters of the soil (microbial activity, microbial respiration and urease enzyme activity) were AG-54 and AG-70 + AG-54. Therefore, the use of AG-70 and AG-54, applied separately or combined, increased tolerance to water stress in both wheat genotypes and constitute a biotechnological tool for the production of crops in water-deficit ecosystems.

Palabras clave : Inoculation; PGPR; water stress; wheat.

        · texto en Inglés     · Inglés ( pdf )