SciELO - Scientific Electronic Library Online

vol.73 número1Cracking in sweet cherries: A comprehensive review from a physiological, molecular, and genomic perspectiveGenetic variation within three populations of Phycella australis (Phil.) Ravenna from Biobío Region, Chile, evaluated using ISSR markers índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Chilean journal of agricultural research

versión On-line ISSN 0718-5839


FASCELLA, Giancarlo; DARWICH, Salem  y  ROUPHAEL, Youssef. Validation of a leaf area prediction model proposed for rose. Chilean J. Agric. Res. [online]. 2013, vol.73, n.1, pp.73-76. ISSN 0718-5839.

Leaf area (LA) is a valuable key for evaluating plant growth, therefore accurate, simple, and nondestructive methods for LA determination are important for physiological and agronomic studies. A LA prediction model based on leaf length (L) and width (W) and developed under greenhouse on 14 cultivars of rose (Rosa hybr.*) was validated on a different cultivar of R. hybrida ’Red France’ and on a wild rose species (Rosa sempervirens L.) grown under open-field conditions with two light environments: ambient and 50% shade. Comparisons between measured vs. calculated LA using the following model: LA (cm2) = 0.56 + 0.717 LW, showed a high degree of correlation (R2 > 0.95) and provided quantitative evidence of the validity of the LA prediction model. Calculated LA values were very close to the measured values, giving an underestimation of 3.5%, 4.2%, 1.1%, and an overestimation of 1.3% in the prediction for R. hybrida ambient light, R. hybrida 50% shade, R. sempervirens ambient light, R. sempervirens 50% shade, respectively. This model can provide accurate estimations of rose LA independently of the genetic materials and the growing conditions and can be adopted in many experimental comparisons without the use of any expensive instruments.

Palabras clave : Leaf length; leaf width; Rosa hybr; Rosa sempervirens; light environments; regression analysis; model validation.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons