SciELO - Scientific Electronic Library Online

 
vol.15 número1Exploring Consumers’ Buying Behavior in a Large Online Promotion Activity: The Role of Psychological Distance and InvolvementHow to Boost your App Store Rating? An Empirical Assessment of Ratings for Mobile Banking Apps índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of theoretical and applied electronic commerce research

versión On-line ISSN 0718-1876

Resumen

ANOWAR, Farzana  y  SADAOUI, Samira. Detection of Auction Fraud in Commercial Sites. J. theor. appl. electron. commer. res. [online]. 2020, vol.15, n.1, pp.81-98. ISSN 0718-1876.  http://dx.doi.org/10.4067/S0718-18762020000100107.

Online auctions have become one of the most convenient ways to commit fraud due to a large amount of money being traded every day. Shill bidding is the predominant form of auction fraud, and it is also the most difficult to detect because it so closely resembles normal bidding behavior. Furthermore, shill bidding does not leave behind any apparent evidence, and it is relatively easy to use to cheat innocent buyers. Our goal is to develop a classification model that is capable of efficiently differentiating between legitimate bidders and shill bidders. For our study, we employ an actual training dataset, but the data are unlabeled. First, we properly label the shill bidding samples by combining a robust hierarchical clustering technique and a semi-automated labeling approach. Since shill bidding datasets are imbalanced, we assess advanced over-sampling, under-sampling and hybrid-sampling methods and compare their performances based on several classification algorithms. The optimal shill bidding classifier displays high detection and low misclassification rates of fraudulent activities.

Palabras clave : Auction fraud; Fraud detection; Shill bidding; Data clustering; Data labeling; Data sampling; supervised classification.

        · texto en Inglés     · Inglés ( pdf )