SciELO - Scientific Electronic Library Online

 
vol.14 número3Retailers’ Differentiation Strategy and Pricing in the Rental Market of Digital Content: A Case of E-TextbooksFactors Influencing the Perception of Website Privacy Trustworthiness and Users’ Purchasing Intentions: The Behavioral Economics Perspective índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of theoretical and applied electronic commerce research

versión On-line ISSN 0718-1876

Resumen

MOHBEY, Krishna Kumar. Frequent Pattern Mining Approach for a Mobile Web Service Environment Using Service Utility. J. theor. appl. electron. commer. res. [online]. 2019, vol.14, n.3, pp.76-88. ISSN 0718-1876.  http://dx.doi.org/10.4067/S0718-18762019000300106.

:

Mobile web services pattern mining is an emerging field today, in which utility is playing an important role. Utility may be the profit, cost or price of an item. In the case of mobile web services, accessed preference is considered as a utility. With the help of utility mining, one can extract highly interesting frequent patterns of mobile web services. In previous related studies, most of the approaches use utility as an essential parameter to discover interesting patterns, but they also generate a large number of uninteresting patterns too. Another problem is related to computational time; because no filtration is applied and computational time is too much. In this paper, an efficient approach, Utility Based Frequent Pattern Mining, is proposed. It extracts utility based frequent patterns with high filtration in less computing time. The experimental results show that the proposed approach has good performance in terms of execution efficiency and memory utilization.

Palabras clave : Frequent service patterns; Knowledge discovery; Mobile services; Sequence utility; Sequential pattern mining.

        · texto en Inglés     · Inglés ( pdf )