SciELO - Scientific Electronic Library Online

 
vol.47 número86Comparación forense de voces mediante el análisis multidimensional de las pausas llenas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista signos

versión On-line ISSN 0718-0934

Resumen

CARDENAS, Juan; OLIVARES, Gastón  y  ALFARO, Rodrigo. Clasificación automática de textos usando redes de palabras. Rev. signos [online]. 2014, vol.47, n.86, pp.346-364. ISSN 0718-0934.  http://dx.doi.org/10.4067/S0718-09342014000300001.

El objetivo de este trabajo es proponer un algoritmo para la clasificación automática de textos, como una alternativa a los tradicionalmente utilizados en esta tarea. El clasificador propuesto considera la dependencia entre las variables predictoras (palabras o términos), algo que los clasificadores de texto comúnmente utilizados no hacen. La dependencia entre estas variables queda plasmada en forma de enlaces en grafos de palabras co-ocurrentes, objetos utilizados para entrenar el clasificador y además estimar la categoría de un texto desconocido. Los resultados obtenidos al clasificar automáticamente el sentido positivo, negativo o neutral de más de 1.000 mensajes de Twitter escritos en español, en distintos contextos (temas), muestran que el algoritmo, además de ser una propuesta novedosa para la clasificación automática de textos, tiene un desempeño, al menos, similar al de otros tradicionalmente utilizados en este tipo de problemas, como las Máquinas de Soporte Vectorial o algoritmos de estadística Bayesiana.

Palabras clave : Clasificación automática de textos; redes de palabras; algoritmo; inteligencia artificial; inteligencia computacional.

        · resumen en Inglés     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons