SciELO - Scientific Electronic Library Online

 
vol.41 número3Relación entre brote y raíz de especies leñosas de grupos funcionales fenológicos de bosque secoVariaciones estructurales en remanentes de bosque umbrófilo mixto en el extremo sur de Brasil índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Bosque (Valdivia)

versión On-line ISSN 0717-9200

Resumen

DANTAS, Daniel et al. Reduction of sampling intensity in forest inventories to estimate the total height of eucalyptus trees. Bosque (Valdivia) [online]. 2020, vol.41, n.3, pp.353-364. ISSN 0717-9200.  http://dx.doi.org/10.4067/S0717-92002020000300353.

This study aimed at evaluating the performance of different models based on Artificial neural networks (ANN) to estimate the total height of eucalyptus trees (Eucalyptus spp.), reducing the number of measurements in the field. Forty-eight ANN were tested, different from each other by the number of trees used as training sample, number of trees used to calculate the dominant height and use of variables (a) categorical, (b) categorical and continuous and (c) continuous, except for the diameter at 1.30 meters above the ground (DBH), used in all combinations. Estimates of height obtained by ANN were compared with values observed and estimates obtained by a hypsometric model. The ANN that showed the best results were used for the height estimation in forest inventory data for further application in the Schumacher and Hall volumetric model. The proposed models were efficient to estimate the total height of eucalyptus trees and allowed the expressive reduction of the number of trees to be measured in forest inventory. The best model found is composed of five trees as training sample, one as test sample and one as validation sample; dominant height coming from the height of the tallest tree in the plot; categorical variable Clone and continuous variables DBH, DBH dominant and basal area of the plot.

Palabras clave : artificial neural network; machine learning; stem volume; Schumacher and Hall.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )