33 3Distribución de anillos de heladas en árboles de Araucaria araucana en bosques xéricos de la Patagonia argentinaEfectos espacio-temporales de los factores humanos en el peligro de incendio en Chile mediterráneo 
Home Page  

  • SciELO

Bosque (Valdivia)

 ISSN 0717-9200

KO, Connie; REMMEL, Tarmo K    SOHN, Gunho. Mapping tree genera using discrete LiDAR and geometric tree metrics. Bosque (Valdivia) []. 2012, 33, 3, pp.313-319. ISSN 0717-9200.  http://dx.doi.org/10.4067/S0717-92002012000300015.

Maps of tree genera are useful in applications including forest inventory, urban planning, and the maintenance of utility transmission line infrastructure. We present a case study of using high density airborne LiDAR data for tree genera mapping along the right of way (ROW) of a utility transmission line corridor. Our goal was to identify single trees that showed or posed potential threats to transmission line infrastructure. Using the three dimensional mapping capability of LiDAR, we derived tree metrics that are related to the geometry of the trees (tree forms). For example, the dominant growth direction of trees is useful in identifying trees that are leaning towards transmission lines. We also derived other geometric indices that are useful in determining tree genera; these metrics included their height, crown shape, size, and branching structures. Our pilot study was situated north of Thessalon, Ontario, Canada along a major utility corridor ROW and surrounding woodlots. The geometric features used for general classification could be categorized into five broad categories related to: 1) lines, 2) clusters, 3) volumes, 4) 3D buffers of points, and 5) overall tree shape that provide parameters as an input for the Random Forest classifier.

: Airborne LiDAR; tree genera mapping; tree geometry; Random Forest Classification.

        ·     · |     · ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License