Servicios Personalizados
Revista
Articulo
Indicadores
Citado por SciELO
Accesos
Links relacionados
Citado por Google
Similares en SciELO
Similares en Google
Compartir
Biological Research
versión impresa ISSN 0716-9760
Resumen
GOLES, ERIC y PALACIOS, ADRIÁN G. Dynamical Complexity in Cognitive Neural Networks. Biol. Res. [online]. 2007, vol.40, n.4, pp.479-485. ISSN 0716-9760. http://dx.doi.org/10.4067/S0716-97602007000500009.
In the last twenty years an important effort in brain sciences, especially in cognitive science, has been the development of mathematical tool that can deal with the complexity of extensive recordings corresponding to the neuronal activity obtained from hundreds of neurons. We discuss here along with some historical issues, advantages and limitations of Artificial Neural Networks (ANN) that can help to understand how simple brain circuits work and whether ANN can be helpful to understand brain neural complexity
Palabras clave : Artificial; Neural Net; Brain; Dynamical Complexity; Computational Neurosciences; Cellular Automata.
