SciELO - Scientific Electronic Library Online

vol.41 issue3On Δᵐ-statistical convergence double sequences in intuitionistic fuzzy normed spacesOn fuzzy γµ-open sets in generalized fuzzy topological spaces author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917


BHAT, K. Arathi  and  SUDHAKARA, G.. Powers of cycle graph which are k-self complementary and k-co-self complementary. Proyecciones (Antofagasta) [online]. 2022, vol.41, n.3, pp.715-732. ISSN 0716-0917.

E. Sampath Kumar and L. Pushpalatha [4] introduced a generalized version of complement of a graph with respect to a given partition of its vertex set. Let G = (V,E) be a graph and P = {V₁, V₂,...,Vk} be a partition of V of order k ≥ 1. The k-complement GP k of G with respect to P is defined as follows: For all Vi and Vj in P, i ≠ j, remove the edges between Vi and Vj , and add the edges which are not in G. Analogues to self complementary graphs, a graph G is k-self complementary (k-s.c.) if GP k ≅ G and is k-co-self complementary (k-co.s.c.) if GP k ≅ Ġ with respect to a partition P of V (G). The mth power of an undirected graph G, denoted by Gm is another graph that has the same set of vertices as that of G, but in which two vertices are adjacent when their distance in G is at most m. In this article, we study powers of cycle graphs which are k-self complementary and k-co-self complementary with respect to a partition P of its vertex set and derive some interesting results. Also, we characterize k-self complementary C2 n and the respective partition P of V (C2 n). Finally, we prove that none of the C2 n is k-co-self complementary for any partition P of V (C2 n).

Keywords : k-complement; k(i)-complement; k-self complementary;k-co-self complementary; powers of cycle graph.

        · text in English     · English ( pdf )