## Services on Demand

## Journal

## Article

## Indicators

- Cited by SciELO
- Access statistics

## Related links

- Cited by Google
- Similars in SciELO
- Similars in Google

## Share

## Proyecciones (Antofagasta)

*Print version* ISSN 0716-0917

#### Abstract

LOURDUSAMY, A.; WENCY, S. Jenifer and PATRICK, F.. Even vertex equitable even labeling for snake related graphs.* Proyecciones (Antofagasta)* [online]. 2019, vol.38, n.1, pp.177-189.
ISSN 0716-0917. http://dx.doi.org/10.4067/S0716-09172019000100177.

Let G be a graph with p vertices and q edges and A = {0,2,4,···, q+1} if q is odd or A = {0,2,4,···,q} if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling f : V (G) → A that induces an edge labeling f∗ deﬁned by f∗(uv)=f(u)+f(v) for all edges uv such that for all a and b in A, |vf(a)−vf(b)|≤1 and the induced edge labels are 2,4,···,2q, where vf(a) be the number of vertices v with f(v)=a for a ∈ A. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph. In this paper, we prove that S(D(Qn)), S(D(Tn)), DA(Qm) ʘ nK1, DA(Tm) ʘ nK1, S(DA(Qn)) and S(DA(Tn)) are an even vertex equitable even graphs.

**Keywords
:
**vertex equitable labeling; even vertex equitable even labeling; double quadrilateral snake; double triangular snake..