SciELO - Scientific Electronic Library Online

 
vol.36 issue2The total detour monophonic number of a graphFuzzy normed linear space valued sequence space author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Abstract

ROJAS, Jacqueline  and  MENDOZA, Ramón. A brief note on the existence of connections and covariant derivatives on modules. Proyecciones (Antofagasta) [online]. 2017, vol.36, n.2, pp.225-244. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172017000200225.

In this note we make a review of the concepts of connection and covariant derivative on modules, in a purely algebraic context. Throughout the text, we consider algebras over an algebraically closed field of characteristic 0 and module will always mean left module. First, we concentrate our attention on a K-algebra A which is commutative, and use the Kähler differentials module, , to define connection (see Subsection 2.1). In this context, it is verified that the existence of connections implies the existence of covariant derivatives (cf. Prop. 2.3), and that every projective module admits a connection (cf. Prop. 2.5). Next (in Section 3), we focus our attention in the discussion of some counterexamples comparing these two notions. In fact, it is known that these two notions are equivalent when we consider regular K -algebras of finite type (see 18, Prop. 4.2). As well as, that there exists a connection on M if, and only if, the Atiyah-Kodaira-Spencer class of M, c(M), is zero (see 17 , Prop. 4.3). Finally, we take into account the case where A is (not necessarily commutative) and it is used the bimodule, , of noncommutative differentials introduces by Connes 9) ,10 in place of Kähler differentials to define a connection. In this case, it is proven that a module admits such connection if, and only if, it is a projective module (see 25, Theorem 5.2).

Keywords : Connection; covariant derivative; projective module.

        · text in English     · English ( pdf )