SciELO - Scientific Electronic Library Online

 
vol.36 issue2A study on prime arithmetic integer additive set-indexers of graphsA brief note on the existence of connections and covariant derivatives on modules author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Abstract

SANTHAKUMARAN, A. P.; TITUS, P.  and  GANESAMOORTHY, K.. The total detour monophonic number of a graph. Proyecciones (Antofagasta) [online]. 2017, vol.36, n.2, pp.209-224. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172017000200209.

For a connected graph G = (V, E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest x − y monophonic path is called an x − y detour monophonic path. A set S of vertices of G is a detour monophonic set of G if each vertex v of G lies on an x − y detour monophonic path for some x and y in S. The minimum cardinality of a detour monophonic set of G is the detour monophonic number of G and is denoted by dm(G). A total detour monophonic set of a graph G is a detour monophonic set S such that the subgraph induced by S has no isolated vertices. The minimum cardinality of a total detour monophonic set of G is the total detour monophonic number of G and is denoted by dm t (G). A total detour monophonic set of cardinality dm t (G) is called a dm t -set of G. We determine bounds for it and characterize graphs which realize the lower bound. It is shown that for positive integers r, d and k ≥ 6 with r < d there exists a connected graph G with monophonic radius r, monophonic diameter d and dm t (G) = k. For positive integers a, b such that 4 ≤ a ≤ b with b ≤ 2a, there exists a connected graph G such that dm(G) = a and dm t (G) = b. Also, if p, d and k are positive integers such that 2 ≤ d ≤ p − 2, 3 ≤ k ≤ p and p − d − k + 3 ≥ 0, there exists a connected graph G of order p, monophonic diameter d and dm t (G) = k.

Keywords : Detour monophonic set; detour monophonic number; total detour monophonic set; total detour monophonic number.

        · text in English     · English ( pdf )