SciELO - Scientific Electronic Library Online

vol.35 issue4About the solutions of linear control systems on Lie groups author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917


GUZZO JR, Henrique  and  LABRA, Alicia. An equivalence in generalized almost-Jordan algebras. Proyecciones (Antofagasta) [online]. 2016, vol.35, n.4, pp.505-519. ISSN 0716-0917.

In this paper we work with the variety of commutative algebras satisfying the identity β((x2y)x - ((yx)x)x) +γ(x3y - ((yx)x)x) = 0, where β, γ are scalars.    They are called generalized almost-Jordan algebras. We prove that this variety is equivalent to the variety of commutative algebras satisfying (3β + γ)(Gy(x,z,t) - Gx(y,z,t)) + (β + 3γ)(J(x,z,t)y - J(y,z,t)x) = 0, for all x,y,z,t ∈ A, where J(x,y,z) = (xy)z+(yz)x+(zx)y and Gx(y,z,t) = (yz,x,t)+(yt,x,z)+ (zt,x,y). Moreover, we prove that if A is a commutative algebra, then J (x, z, t)y = J (y, z, t)x, for all x, y, z, t ∈ A, if and only if A is a generalized almost-Jordan algebra for β= 1 and γ = -3, that is, A satisfies the identity (x2y)x + 2((yx)x)x - 3x3y = 0 and we study this identity. We also prove that if A is a commutative algebra, then Gy(x,z,t) = Gx(y,z,t), for all x,y,z,t ∈ A, ifand only if A is an almost-Jordan or a Lie Triple algebra.

Keywords : Jordan algebras; generalized almost-Jordan algebras; Lie Triple algebras.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License