SciELO - Scientific Electronic Library Online

 
vol.35 issue4About the solutions of linear control systems on Lie groups author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Abstract

GUZZO JR, Henrique  and  LABRA, Alicia. An equivalence in generalized almost-Jordan algebras. Proyecciones (Antofagasta) [online]. 2016, vol.35, n.4, pp.505-519. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172016000400011.

In this paper we work with the variety of commutative algebras satisfying the identity β((x2y)x - ((yx)x)x) +γ(x3y - ((yx)x)x) = 0, where β, γ are scalars.    They are called generalized almost-Jordan algebras. We prove that this variety is equivalent to the variety of commutative algebras satisfying (3β + γ)(Gy(x,z,t) - Gx(y,z,t)) + (β + 3γ)(J(x,z,t)y - J(y,z,t)x) = 0, for all x,y,z,t ∈ A, where J(x,y,z) = (xy)z+(yz)x+(zx)y and Gx(y,z,t) = (yz,x,t)+(yt,x,z)+ (zt,x,y). Moreover, we prove that if A is a commutative algebra, then J (x, z, t)y = J (y, z, t)x, for all x, y, z, t ∈ A, if and only if A is a generalized almost-Jordan algebra for β= 1 and γ = -3, that is, A satisfies the identity (x2y)x + 2((yx)x)x - 3x3y = 0 and we study this identity. We also prove that if A is a commutative algebra, then Gy(x,z,t) = Gx(y,z,t), for all x,y,z,t ∈ A, ifand only if A is an almost-Jordan or a Lie Triple algebra.

Keywords : Jordan algebras; generalized almost-Jordan algebras; Lie Triple algebras.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License