SciELO - Scientific Electronic Library Online

 
vol.35 issue3An alternative proof of a Tauberian theorem for Abel summability methodTotal edge irregularity strength of disjoint union of double wheel graphs author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Abstract

KRISHNAKUMARI, B  and  VENKATAKRISHNAN, Y. B. Unicyclic graphs with equal domination and complementary tree domination numbers. Proyecciones (Antofagasta) [online]. 2016, vol.35, n.3, pp.245-249. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172016000300002.

Let G = (V, E) be a simple graph. A set is a dominating set if every vertex in V(G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set if induced sub graph (V \ D) is a tree. The domination (complementary tree domination, respectively) number of G is the minimum cardinality of a dominating (complementary tree dominating, respectively) set of G. We characterize all unicyclic graphs with equal domination and complementary tree domination numbers.

Keywords : Domination.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License