SciELO - Scientific Electronic Library Online

vol.35 issue1Coupled lower and upper solution approach for the existence of Solutions of nonlinear coupled system with nonlinear coupled boundary conditions author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Proyecciones (Antofagasta)

Print version ISSN 0716-0917


LOURDUSAMY, A.  and  PATRICK, F.. Sum divisor cordial graphs. Proyecciones (Antofagasta) [online]. 2016, vol.35, n.1, pp.119-136. ISSN 0716-0917.

A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V (G) to {1, 2, ..., |V (G)|} such that an edge uv is assigned the label 1 if 2 divides f (u) + f (v) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that path, comb, star, complete bipartite, K2 + mK1, bistar, jewel, crown, flower, gear, subdivision of the star, K1,3* K1,n and square graph of Bn,n are sum divisor cordial graphs.

Keywords : Sum divisor cordial; divisor cordial..

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License