SciELO - Scientific Electronic Library Online

 
vol.33 issue4L(1,1)-Labeling of Direct Product of any Path and CycleOn linear maps that preserve G-partial-isometries in Hilbert space author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Proyecciones (Antofagasta)

Print version ISSN 0716-0917

Abstract

SANTHAKUMARAN, A. P.  and  MAHENDRAN, M.. The upper open monophonic number of a graph. Proyecciones (Antofagasta) [online]. 2014, vol.33, n.4, pp.389-403. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172014000400003.

For a connected graph G of order n,a subset S of vertices of G is a monophonic set of G if each vertex v in G lies on a x-y monophonic path for some elements x and y in S. The minimum cardinality of a monophonic set of G is defined as the monophonic number of G, denoted by m(G). A monophonic set of cardinality m(G) is called a m-set of G.A set S of vertices of a connected graph G is an open monophonic set of G if for each vertex v in G ,either v is an extreme vertex of G and v G S,or v is an internal vertex of a x-y mono-phonic path for some x,y G S. An open monophonic set of minimum cardinality is a minimum open monophonic set and this cardinality is the open monophonic number, om(G). An open monophonic set S of vertices in a connected graph G is a minimal open monophonic .set if no proper subset of S is an open monophonic set of G.The upper open monophonic number om+ (G) is the maximum cardinality of a minimal open monophonic set of G. The upper open monophonic numbers of certain standard graphs are determined. It is proved that for a graph G of order n, om(G) = n if and only if om+(G)= n. Graphs G with om(G) = 2 are characterized. If a graph G has a minimal open monophonic set S of cardinality 3, then S is also a minimum open monophonic set of G and om(G) = 3. For any two positive integers a and b with 4 < a < b, there exists a connected graph G with om(G) = a and om+(G) = b.

Keywords : Distance; geodesic; geodetic number; open geodetic number; monophonic number; open monophonic number; upper open monophonic number.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License