SciELO - Scientific Electronic Library Online

vol.84 número3¿Por qué hay tantos coleópteros presuntamente raros en los bosques templados de Chile?Variación temporal en la dieta del Gaviotín Sudamericano (Sterna hirundinacea, Charadriiformes: Laridae) en los sitios de invernada índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Revista chilena de historia natural

versión impresa ISSN 0716-078X


KARRASCH, BERNHARD et al. Ecomicrobiology and microbial assimilative capacity of the oligotrophic Andean Lake Laja, Chile. Rev. chil. hist. nat. [online]. 2011, vol.84, n.3, pp.433-450. ISSN 0716-078X.

A strong socio-economic development pressure in South Chile will more and more cause an impact to the present lakes and rivers. Nevertheless, our knowledge concerning the ecological structure and the microbial self-purification capabilities of these lacustrine water bodies is scant but essential for a future sustainable development of land and water use. We studied Lake Laja, a lake already heavily impacted by water diversions for hydropower generation and irrigation. Typical for the Andean region Lake Laja is an oligotrophic water body, limited by nitrogen nutrients. Only very low chlorophyll a and particulate organic carbon (POC) concentrations and a small abundance and biomass of bacteria (mainly ultramicrobacteria) and heterotrophic flagellates were encountered. Weak trophic interrelations were derived from a high bacteria-to-heterotrophic flagellate ratio. For the ten investigated extracellular enzymes (alkaline phosphatase, leucine, arginine-, glycine and tyrosine-aminopeptidase, α-, β-D-glucosidase, α-, β-D-galactosidase, N-acetyl-β-D-glucosaminidase), with the exception of α-D-glucosidase, a broad range of organic matter degradation activities was proven. Probably, due to the N-limitation, organic nitrogen hydrolysing extracellular enzymes reached activities on average of 45 % compared to other studies in oligotrophic waters. The possible effect of N-limitation on extracellular enzyme activities was more pronounced by cell specific extracellular enzymatic activity rates, which exceeded those of other oligotrophic water bodies on average by factor 2. The overall activities of all microbial extracellular enzymes studied proved to be dominated by the dissolved free external enzymes (up to 98 %) over the ectoenzymes which are associated with particulate organic matter (bacterial cell walls, particles, and aggregates). It is concluded that future socio-economic changes, dealing with watershed human intervention (accelerating inorganic and organic loads) as well as global change (temperature and precipitation changes) could lead to significant changes in the ecology of Lake Laja.

Palabras clave : bacterioplankton; extracellular enzymes; heterotrophic flagellates; N-limitation, phytoplankton.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons