Servicios Personalizados
Revista
Articulo
Indicadores
Links relacionados
-
Citado por Google
Similares en SciELO
-
Similares en Google
Compartir
Proyecciones (Antofagasta)
versión impresa ISSN 0716-0917
Proyecciones (Antofagasta) v.28 n.1 Antofagasta mayo 2009
http://dx.doi.org/10.4067/S0716-09172009000100005
Vol. 28, No 1, pp. 4756, May 2009.
Universidad Católica del Norte
Antofagasta - Chile
FINITISTIC SPACES IN L-TOPOLOGICAL SPACES
T. BAIJU
SUNIL JACOB JOHN
National Institute of Technology Calicut, India.
Correspondencia a:
Abstract
In this paper the concept of finitistic spaces in L-topological spaces is introduced by means of α-Q-covers of open L subsets. Also a characterization of finitistic spaces in the weakly induced L-topological spaces is obtained. Moreover the behavior of finitistic spaces under various types of maps such as fuzzy perfect maps is also investigated.
REFERENCES
[1] T. Baiju and Sunil Jacob John, Covering dimension and Normality in L-topological spaces, (Communi [ Links ]cated).
[2] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, [ Links ](1972).
[3] C. Chang, Fuzzy Topological Spaces, Journal of Math. Anal. Appl., Vol. 24, pp. 182190, [ Links ](1968).
[4] S. Deo, Topology of finitistic spaces and related topics, Bull. Allahabad Math. Soc., Vol. 2, pp. 3161, [ Links ](1987).
[5] S. Deo and A. R. Pears, A completely finitistic space is finite dimensional, Bull. London Math. Soc., Vol. 17, pp. 4951, [ Links ](1985).
[6] S. Deo and M. Singh, On certain construction in finitistic spaces, Int. J. Math. And Math. Soc. Vol. 6, pp. 477482, [ Links ](1983).
[7] S. Deo and H. S. Tripathy, Compact lie group action on finitistic spaces, Topology, Vol. 21, pp. 393399, [ Links ](1982).
[8] J. Goguen, L-fuzzy Sets, J. Math. Anal. Appl., Vol. 18, pp. 145-174, [ Links ](1967).
[9] Y. Hattori, A note on finitistic spaces, Q & A in General Topology, Vol. 3, pp. 4355, [ Links ](1985).
[10] Y. Hattori, finitistic spaces and Dimension, Houston Journal of Mathematics, Vol. 25, No. 4, [ Links ](1999).
[11] U. Hohle and S. E. Rodabaugh, Mathematics of Fuzzy Sets : Logic, Topology and Measure Theory, The Hand Book of Fuzzy Set Series 3, Kluwer Academic Pub., [ Links ](1999).
[12] D. S. Jamwal and Shakeel Ahmed, Covering Dimension and Finitistic Spaces in L-topology, Conf. Proc. Fuzzy Set Theory, held in B.H.U., Allied Pub., pp. 117122, [ Links ](2002).
[13] T. Kubiak, The topological modification of the L-fuzzy unit interval, : S.E. Rodabaugh, E.P. Klement, U. Hohle (Eds.), Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht, pp. 275305, [ Links ](1992).
[14] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., Vol. 56, pp. 621633, [ Links ](1976).
[15] Shakeel Ahmed, On α-Finitistic Spaces, Tamsui Oxford Journal of Mathematical Sciences, Vol. 22, No. 1, pp. 7382, [ Links ](2006).
[16] R. G. Swan, A new method of fixed point theory, Comm. Math. Helv. Vol. 34, pp. 116, [ Links ](1960).
[17] G. J. Wang, On the structure of fuzzy lattices, Acta math. Sinica, Vol. 29, pp. 539543, [ Links ](1986).
[18] G. J. Wang, Theory of L-fuzzy topological spaces, Shaanxi Normal University Pub., Xian, [ Links ](1988).
[19] Ying-Ming Liu and Mao-Kang Luo, Fuzzy Topology, Advances in Fuzzy SystemsApplications and Theory Vol.9, World Scientific, (1997). [ Links ]
T. BAIJU
Department of Mathematics
National Institute of Technology Calicut
Calicut-673, 601
Kerala
India
e-mail : sunil@nitc.ac.in
SUNIL JACOB JOHN
Department of Mathematics
National Institute of Technology Calicut
Calicut-673, 601
Kerala
India
e-mail : sunil@nitc.ac.in
Received : February 2009. Accepted : April 2009