Maps preserving the square zero of η-Lie product of operators

Ali Taghavi1 orcid.org/0000-0001-6230-733X
Roja Hosseinzadeh2 orcid.org/0000-0003-2413-1892
Masoomeh Yousefi3

University of Mazandaran, Dept. of Mathematics, Faculty of Mathematical Sciences, Babolsar, Iran.
1taghavi@umz.ac.ir; 2ro.hosseinzadeh@umz.ac.ir; 3musefy@yahoo.com

Received: July 2019 | Accepted: January 2020

Abstract:

Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on an infinite dimensional Hilbert space \mathcal{H}. In this paper, we identify the form of the unital surjective additive map $\varphi : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ which preserves the square zero of η-Lie product of operators for some scalar η with $\eta \neq 0, 1, -1$.

Keywords: Preserver problem; Square zero operator; η-Lie product.

Cite this article as (IEEE citation style):

Article copyright: © 2020 Ali Taghavi, Roja Hosseinzadeh and Masoomeh Yousefi. This is an open access article distributed under the terms of the Creative Commons Licence, which permits unrestricted use and distribution provided the original author and source are credited.
1. Introduction

Let A be a Banach algebra, $A, B \in A$ and η be a scalar. The Lie product, η-Lie product and triple Jordan products are defined as $[A, B] = AB - BA$, $[A, B]_\eta = AB + \eta BA$ and $A * B = ABA$, respectively. In last decade, many mathematician research on the preserving problems. Specially, maps preserving a certain property of products were often considered, see [1 - 4], [6], [8] and [10 - 12]. We point to some of them close to our purpose.

Authors in [10], considered the maps that strongly preserve the η-Lie product, that is $\phi(A)\phi(P) + \eta\phi(P)\phi(A) = AP + \eta PA$, for every A, some idempotent P and some scalar η. Author in [12], identified the forms of bijective maps preserving Lie products from a factor von Neumann algebra into another factor von Neumann algebra.

Let $B(\mathcal{X})$ be the algebra of all bounded linear operators on a Banach space \mathcal{X}. In [4], authors characterized the form of unital surjective maps on $B(\mathcal{X})$ preserving the nonzero idempotency of product of operators in both directions. Also in [11], authors characterized the form of linear surjective maps on $B(\mathcal{X})$ preserving the nonzero idempotency of either products of operators or triple Jordan products of operators.

We say an operator $A \in B(\mathcal{X})$ is a square zero operator, when $A^2 = 0$. Let $B(\mathcal{H})$ be the algebra of all bounded linear operators on an infinite dimensional Hilbert space \mathcal{H}. In this paper, we identify the form of surjective additive map $\phi : B(\mathcal{H}) \to B(\mathcal{H})$ such that $\phi(I) = I$ and preserves the square zero of η-Lie product of operators for some scalar η with $\eta \neq 0, 1, -1$. The complete form of our main result is as following:

Main Theorem. Let $B(\mathcal{H})$ be the algebra of all bounded linear operators on an infinite dimensional Hilbert space \mathcal{H}. Let $\phi : B(\mathcal{H}) \to B(\mathcal{H})$ be an unital surjective additive map which satisfies

$$[A, B]^2_\eta = 0 \Leftrightarrow [\phi(A), \phi(B)]^2_\eta = 0,$$

for every $A, B \in B(\mathcal{H})$ and for some scalar η with $\eta \neq 0, 1, -1$. Then there exists either a bounded invertible linear or a conjugate linear operator $T : \mathcal{H} \to \mathcal{H}$ such that

$$\phi(A) = TAT^{-1} \quad \text{or} \quad \phi(A) = TA^*T^{-1}$$

for every $A \in B(\mathcal{H})$.
2. Proofs

First we recall some notations. We denote by \(\mathcal{I}(\mathcal{H}) \) the set of all idempotent operators in \(\mathcal{B}(\mathcal{H}) \). For every nonzero \(x, y \in \mathcal{H} \), the symbol \(x \otimes y \) stands for the rank one linear operator on \(\mathcal{H} \) defined by \((x \otimes y)z = \langle z, y \rangle x \) for any \(z \in \mathcal{H} \). Note that every rank one operator in \(\mathcal{B}(\mathcal{H}) \) can be written in this way.

The rank one operator \(x \otimes y \) is idempotent if and only if \(\langle x, y \rangle = 1 \).

Let \(P, Q \in \mathcal{B}(\mathcal{H}) \) be idempotent operators. We say that \(P \) and \(Q \) are orthogonal if and only if \(PQ = QP = 0 \).

Proposition 2.1. Let \(A \in \mathcal{B}(\mathcal{H}) \), \(x, y \in \mathcal{H} \) such that \(\langle x, y \rangle = 1 \) and let \(\eta \) be a scalar such that \(\eta \neq 0, 1, -1 \). Then \([A, x \otimes y]_\eta^2 = 0 \) if and only if only one of the following statements occurs:

(i) \(Ax < Ax, y > = -\eta x < A^2 x, y > \) and \(Ax = -\eta x < Ax, y > \).

(ii) \(A^* y = 0 \).

Proof. Assume first that \(Ax < Ax, y > = -\eta x < A^2 x, y > \) and \(Ax = -\eta x < Ax, y > \). Hence

\[
[A, x \otimes y]_\eta^2 = (Ax \otimes y + \eta x \otimes A^* y)^2 \\
= \langle Ax, y \rangle Ax \otimes y + \eta Ax \otimes A^* y \\
+ \eta^2 < Ax, y > x \otimes A^* y + \eta < A^2 x, y > x \otimes y \\
= -\eta x < A^2 x, y > \otimes y - \eta^2 x < Ax, y > \otimes y A \\
+ \eta^2 < Ax, y > x \otimes A^* y + \eta < A^2 x, y > x \otimes y = 0.
\]

Now if \(A^* y = 0 \), then

\[
[A, x \otimes y]_\eta^2 = (Ax \otimes y + \eta x \otimes A^* y)^2 \\
= (Ax \otimes y)^2 = \langle Ax, y \rangle Ax \otimes y \\
= \langle x, A^* y \rangle Ax \otimes y = 0.
\]

Conversely, Assume that \([A, x \otimes y]_\eta^2 = 0 \). It is clear that

\(B^2 = 0 \) if and only if \(B(Bx) = 0 \), \(\forall x \in X \) if and only if \(\text{Im} \ B \subseteq \ker \ B \).

This together with assumption implies

\([A, x \otimes y]_\eta^2 = 0 \) if and only if \(\text{Im}[A, x \otimes y]_\eta \subseteq \ker[A, x \otimes y]_\eta \).
Let $A^* y \neq 0$. If $A^* y$ and y are linearly independent, then In the following lemmas, assume that $\phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is an unital surjective additive map which satisfies $[A, B]_\eta^2 = 0 \iff [\phi(A), \phi(B)]_\eta^2 = 0$, for every $A, B \in \mathcal{B}(\mathcal{H})$ and for some scalar η with $\eta \neq 0, 1, -1$.

Lemma 2.2. ϕ preserves the square zero operators in both directions.

Proof. Let $A \in \mathcal{B}(\mathcal{H})$. By assumptions we have

\[
A^2 = 0 \iff (1 + \eta)^2 A^2 = [A, I]_\eta^2 = 0 \\
\iff [\phi(A), I]_\eta^2 = 0 \\
\iff (1 + \eta)^2 \phi(A)^2 = 0 \\
\iff \phi(A)^2 = 0.
\]

The following theorem is a straightforward consequence of Theorem 2.1 in [7].

Theorem 2.3. Let \mathcal{H} be an infinite dimensional Hilbert space and $\phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ be a surjective additive map satisfying $\phi(I) = I$. Assume that ϕ preserves the square zero operators in both directions. Then ϕ is injective and preserves the idempotent operators in both directions.

Lemma 2.4. ϕ is injective and preserves the idempotent operators in both directions.

Proof. It is clear by assumptions and Theorem 2.3.

Lemma 2.5. There exists either a bounded invertible linear or a conjugate linear operator $T : \mathcal{H} \to \mathcal{H}$ such that

\[
\phi(P) = TPT^{-1}
\]

or

\[
\phi(P) = TP^*T^{-1}
\]

for every $P \in \mathcal{I}(\mathcal{H})$.
Maps preserving the square zero of η-Lie product of operators

Proof. Since ϕ is additive and by Lemma 2.4 preserves idempotent operators in both directions, then ϕ preserves the orthogonality of idempotent operators in both directions. Thus we can obtain the form of ϕ on idempotents by Lemma 3.1 in [5].

Remark 2.6. Let T be the same operator defined in Lemma 2.5. It is clear that $\Psi = T^{-1} \phi T : B(H) \to B(H)$ satisfies the assumptions on ϕ. Therefore, without loss of generality we can assume that $\phi(P) = P$ or $\phi(P) = P^*$ for every $P \in \mathcal{I}(H)$.

Now we are in a position to prove our main result.

Proof of Main Theorem. Let $A \in B(H)$ such that $\ker A \neq 0$. Let $x \in \ker A$ be nonzero. Hence there exists a nonzero vector $y \in H$ such that $< x, y > = 1$. Let the first case of Lemma 2.5 occurs. So by Remark 2.6, $\phi(x \otimes y) = x \otimes y$. By $Ax = 0$ and Proposition 2.1 we infer that $[\phi(A), x \otimes y]_\eta = 0$ and by assumption

$$[\phi(A), \phi(x \otimes y)]_\eta^2 = [\phi(A), x \otimes y]_\eta^2 = 0.$$ Using again Proposition 2.1 implies

(1) $\phi(A)x < \phi(A)x, y > = -\eta x < \phi(A)^2 x, y >$

and

(2) $\phi(A)x = -\eta x < \phi(A)x, y >$

or $\phi(A)^*y = 0$. We assert that $\phi(A)x = 0$. We assume on the contrary that $\phi(A)x \neq 0$. Let us first assume that (1) and (2) occur.

Thus

$$-\eta x < \phi(A)x, y >^2 = -\eta x < \phi(A)^2 x, y >$$

and since $\eta \neq 0$, $< \phi(A)x, y >^2 = < \phi(A)^2 x, y >$. It easily follows that x, $\phi(A)x$ and $\phi(A)^2 x$ are linearly dependent, because otherwise, there exists a vector y such that $< x, y > = 1$ and $< \phi(A)x, y >^2 \neq < \phi(A)^2 x, y >$.

If x and $\phi(A)x$ are linearly dependent, then $\phi(A)x = \alpha x$ for some nonzero scalar α. From (2) we obtain $\alpha x < x, y > = -\eta \alpha x < x, y >$ which implies that $\eta = -1$, that is a contradiction. If x and $\phi(A)x$ are linearly independent, then we conclude that $\phi(A)^2 x \in \text{span}\{\phi(A)x, x\}$ and so $\phi(A)^2 x = \alpha \phi(A)x + \beta x$ for some scalars α, β. It implies that $< \phi(A)^2 x, y > = \alpha < \phi(A)x, y > + \beta$. According to (1)

$$\phi(A)x < \phi(A)x, y > = -\eta x (\alpha < \phi(A)x, y > + \beta).$$
Since x and $\phi(A)x$ are linearly independent, $<\phi(A)x, y> = 0$ which by (2) implies, $<x, y> = 0$, a contradiction.

Now let $\phi(A)^*y = 0$. Since we assume that $\phi(A)x \neq 0$, there exists a vector y such that $<x, y> = 1$ and $<\phi(A)x, y> \neq 0$. This implies $<x, \phi(A)^*y> \neq 0$. It is a contradiction, because $\phi(A)^*y = 0$. The proof of assertion is completed and so $\ker A \subseteq \ker \phi(A)$, when $\ker A \neq 0$. This implies that if $\ker A \neq 0$, then $\ker \phi(A) \neq 0$ and this with a similar discussion as above yields that $\ker \phi(A) \subseteq \ker A$. Therefore, $\ker \phi(A) = \ker A$ for every operator A such that $\ker A \neq 0$. Moreover, this implies that $\ker A \neq 0$ if and only if $\ker \phi(A) \neq 0$ which yields that $\ker A = 0$ if and only if $\ker \phi(A) = 0$. Hence $\ker \phi(A) = \ker A$ for every operator A and so $F(\phi(A)) = F(A)$ and since ϕ is additive, $F(\phi(A) + \phi(B)) = F(A + B)$ for every $A, B \in \mathcal{B}(H)$. The form of such ϕ has been given in [9], Theorem 3.5. By this theorem, $\phi(A) = U_A + R$ such that $U = I - 2\phi(0)$ and $R = \phi(0)$. Since ϕ is additive, $\phi(A) = A$. With a similar discussion, we obtain $\phi(A) = A^*$, when the second case in Lemma 2.5 occurs. These together with Remark 2.6 complete the proof.

References

