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Introduction
Hydraulic fracturing is the process of fracture inducement 
and propagation, which exist in natural conditions, as 
intrusive dykes generated by magma driven flows (Spence 
and Turcotte, 1985); and artificially developed for industrial 
applications such as: increase of the permeability in oil and 
gas reservoirs (Valkó and Economides, 1995), stimulation 
of geothermal reservoirs, nuclear waste disposal (Abou-
Sayed, 1994), in-situ stress measurements (Haimson 
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In the current conditions of mines exploited by caving 
methods, pre-conditioning by hydraulic fracturing has 
proven to have positive impacts such as the decrease in 
the block’s size related to the primary fragmentation. 
An essential part of the pre-conditioning design is 
the estimation of the hydraulic fracture’s length. On 
the other hand, the energy dissipated by the viscous 
flow inside the fracture modifies the propagation 
characteristics of these fractures, making difficult 
the use of standard methods of fracture mechanics 
in numerical modelling. For this reason, for plain-
strain and axisymmetric cases we propose a numerical 
resolution strategy, which can be used for any set 
of hydraulic fracturing parameters. These criteria 
are based on the pressure and opening values at the 
inlet, and additionally on their length (or radius). 
Furthermore, this last characteristic, allow us to 
modify the propagation criteria in order to generate 
diagnostic tools for the estimation of fractures 
dimensions in the field.

Keywords: hydraulic fracturing, numerical modelling, 
diagnostic technique, mine pre-conditioning 

Fecha de entrega: 5 de enero 2015
				    Fecha de aceptación: 22 de septiembre 2015

En las actuales condiciones de las minas explotadas por 
métodos de hundimiento, el pre-acondicionamiento con 
fracturamiento hidráulico ha probado tener impactos positivos 
como la disminución del tamaño de bloques asociados a la 
fragmentación primaria. Parte fundamental del diseño del pre-
acondicionamiento es la estimación de la longitud de las fracturas 
hidráulicas. Por otro lado, la energía disipada por el flujo dentro 
de la fractura modifica las características de propagación de 
estas fracturas, haciendo difícil el uso de los métodos estándar 
de la mecánica de fracturas en la modelación numérica. Por esta 
razón, para los casos de deformaciones planas y de simetría de 
revolución se presentan estrategias de resolución numérica, que 
pueden ser utilizadas para cualquier conjunto de parámetros del 
fracturamiento hidráulico. Estos criterios utilizan los valores 
de la presión o de la apertura de la fractura en el punto de 
inyección, además de su longitud (o radio). Además, esta última 
característica permite modificar los criterios de propagación 
generando herramientas de diagnóstico para la estimación de 
las dimensiones de las fracturas hidráulicas en terreno.

Palabras clave: fracturamiento hidráulico, modelamiento 
numérico, técnica de diagnóstico, pre-acondicionamiento de 
minas

and Cornet, 2003) and rock mass pre-conditioning in 
underground mines exploited by non-supported methods 
such as caving and longwall methods (Jeffrey et al., 2001; 
van As et al., 2004).

On the other hand, the current trend in mining is an increase 
in the importance of underground mines, because reserves 
are deeper and with lower grades (Moss, 2011), where 
a large number of caving mines are located in hard rock 
masses, with a high-stress environment and low density of 
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discontinuities. These conditions involve an increment of 
seismicity, stagnation of caving and increase in the blocks 
size. To overcome these problems, pre-conditioning by 
hydraulic fracturing is being used to generate a controlled 
alteration of the rock mass previous to mining, which 
has induced a decrease in the magnitude of seismicity, an 
increase of the connection time to the crater and a reduction 
in the size of rock fragments (Araneda and Sougarret, 
2007). 

A proper estimation of fracture’s length evolution is an 
important part of the design of hydraulic fracturing, which 
is generally done by means of numerical modelling; 
hence, it is crucial to develop mathematical models 
able to predict the fracture growth (length, opening and 
internal fluid pressure variation). When the rock mass 
is impermeable, the problem involves three coupled 
phenomena: the mechanical deformation of fracture’s 
surfaces, the fluid flow inside the fracture and fracture’s 
propagation. From the point of view of the problem’s 
mathematical formulation, coupling of the aforementioned 
phenomena leads to a complex structure solution which 
is dominated by near tip processes (Adachi et al., 2007; 
Detournay, 2004). For the case of hydraulic fractures that 
propagates in a medium without fracture resistance, it has 
been shown that a stress singularity proportional to r -1/3 
exists (Desroches et al., 1994), where r is the coordinate 
ahead of the tip, which is different to the r -1/2 classical 
singularity of Linear Elastic Fracture Mechanics LEFM. 
Furthermore, fracture toughness K

Ic
 is not necessarily a 

leading term in the solution. These facts complicate (and, in 
some cases prevent) the use of typical numerical methods 
to control fracture propagation; however, the problem has 
been solved imposing the propagation condition K

I
 = K

Ic
 

(Akulich and Zvyagin, 2008; Desroches and Thiercelin, 
1993), where the stress intensity factor K

I
 is calculated 

numerically using the weighted function method. Also, the 
imposition of proper asymptotic behaviour of tip openings 
has been used to solve some specific cases (Garagash and 
Detournay, 2007; Garagash, 2006). Nevertheless, these 
approaches are based on the complex tip behaviour and 
explicit energy concepts have not been used.

After hydraulic fracture is generated, an evaluation of the 
performance is necessary, which can be accomplished 
through indirect methods, such as well testing and net-

pressure analysis, and by means of direct methods, such as 
tiltmeters and micro-seismic mapping (Moss and Maron, 
1987). Normally, direct methods give better results than 
indirect ones, but they require specific equipment, and 
additionally its results may be affected by ambient noise, 
such as wind, mines induced seismicity and subsidence. 
Indirect methods are able to give a rough description of 
the geometry, which might be enough for design purposes; 
therefore, the focus of this work is on the development 
of a tool for fracture’s dimensions estimation using field 
injection-pressure records (net-pressure analysis). To 
achieve this objective, we re-examine the problem of 
hydraulic fracture propagation driven by a Newtonian 
fluid, propagating in an impermeable, linear-elastic 
medium for a plain-strain and axisymmetric geometries. 
For both cases, we develop mode I numerical resolution 
strategy defined in terms of inlet values, such as pressure 
and opening at the injection point, avoiding tip behaviour. 
Based on these propagation conditions, we propose a net-
pressure analysis, which considers fracture resistance, 
viscous dissipation, local mass conservation, and solid-
fluid coupling.

This paper is organized as follows. First, the mathematical 
formulation is described. Then, new parameters based on 
inlet values and fracture length (radius), are introduced 
and propagation conditions with these parameters are 
generated. Finally, results of these criteria in numerical 
modelling and the development of net-pressure analysis 
founded on the previously generated propagation criteria 
are shown.

Mathematical formulation
A symmetric fracture under plain-strain assumption and 
a radially symmetric fracture are considered, both have 
half-length (or radius) l(t), and propagate through an 
impermeable, linear-elastic solid, driven by the injection 
of a incompressible Newtonian fluid in the center of 
fractures. The medium is characterized by a plain-strain 
Young’s modulus E’, fracture toughness K

Ic
, and a constant 

confining stress σ
0
, while the injection is characterized by 

the fluid viscosity µ and a constant injection rate Q
0
 (see 

Figure 1).

The problem consists in determining the evolution of 
the fracture’s half-length l(t), opening w(x,t) and the net-
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pressure p(x,t) = p
f
(x,t) – σ

0
(x), where p

f
 is the total fluid 

pressure, t is the injection time, and x is the coordinate from 
the inlet to the tip. The model assumptions are: the fracture 
is completely filled with fluid; therefore the solution does 
not depend on σ

0
; the flow is unidirectional and laminar; 

the viscous shear stresses in fracture’s walls are negligible; 
and the fracture propagates in mobile equilibrium. To 
impose the quasi-static propagation (mobile equilibrium), 
a new strategy is introduced.

Figure 1: Schematic representation of the problem

The opening of the fracture walls w(x,t) produced by the 
net-pressure p(x,t) can be obtained by means of integral 
equations, which shows the non-local character of the 
problem:

where m = 1 and m = 2, for plane-strain and radially 
symmetric geometries, respectively. The elastic kernels 
G

1
 and G

2
 are given in Sneddon (1951) and Sneddon and 

Lowengrub (1969).

By combining the local fluid mass balance and Poiseuille 
law we obtain Reynolds’s equation, which is used to model 
the fluid flow inside the fracture:
 

where v
tip

(t) is the propagation velocity and the right hand 
term comes from the assumption that fluid reaches the 
tip of the fracture, i.e. q(lˉ,t) = v

tip
(t)w(lˉ,t), superscript ˉ 

indicate left limit. Fluid injection is modeled by a source at 

the center of the fracture.

Also, the global mass conservation is considered:

							     

The uniqueness of the solution is achieved applying a quasi-
static propagation condition such as K

I
 = K

Ic
; however, in 

this paper this condition is enforced in a different manner, 
which is presented and discussed in the next section.

Proposed method 
The complex near-tip behaviour of the hydraulic 
fractures makes it difficult to impose the classical quasi-
static criterion K

I
 = K

Ic
. For this reason, we translate the 

evaluation of the propagation condition to the injection 
point, avoiding calculations in the tip. Furthermore, 
hydraulic fracture’s evolution depends on their energy 
dissipation processes, so, it seems reasonable to use an 
energy parameter in numerical modelling. Therefore, we 
developed new parameters, W

m
, which depends on inlet 

values, such as pressure and opening at the injection point, 
and with the same units that the energy release rate (Joules/
m2):

For the axisymmetric case we choose w(0,t) instead of 
p(0,t) because the last one is singular at the inlet. Based on 
existing semi-analytical solutions (Garagash, 2006; 
Garagash and Detournay, 2007; Savistski and Detournay, 
2002), we described the behaviour of W

m
 for viscosity W

mV
 

and toughness W
mT

 dominated regimes, i.e. when the 
energy is expended mainly in viscous flow or fracture 
creation, respectively. The transition between these two 
limiting cases is controlled by the dimensionless toughness 
T

m
:
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It is preferable to have an expression W
m
 in terms of 

dimensionless toughness T
m
, because this parameter 

controls the evolution of fracture. Hence, we define the 
dimensionless form of W

m
 as = W

m
/W

mV
:

The existing semi-analytical solutions (Garagash, 2006; 
Garagash and Detournay, 2007; Savistski and Detournay, 
2002) only apply for limited cases; then, we generated 
continuous functions for the entire range T

m
 = [0, ∞), which 

can be included as propagation condition for the hydraulic 
fracturing algorithm. The form of these functions is: 

where introduces the interaction and it is used to fit 
the function in the transition between viscosity and tough-
ness regimes; must have the following characteris-
tics:

•	 Strictly positive in T
m
 = [0, ∞)

•	

In line with these requirements, we suggest a simple 
rational function of the form:

	

where for the plane-strain case a
1
 = -0.4246, b

1
 = 4.9317, 

and for the axisymmetric case a
2
 = -0.0253, b

2
 = 4.0940. 

These coefficients were obtained by imposing the 
continuity of the expression (11) for both cases. By 
combining the above equations, we obtain quasi-static 
criteria for the plane-strain case in expression (12), and for 
the axisymmetric case in expression (13):

Applications
Algorithm implemented
The solution strategies to impose the quasi-static 
propagation were implemented in an algorithm which 
solves the hydraulic fracture propagation’s problem in 
a coupled manner. For a given fracture half length (or 
radius) l(t), the algorithm solves iteratively the governing 
equations to achieve the time which meets quasi-static 
propagation according to the (12) and (13). The elasticity 
equation (1) and the fluid flow equations (2) and (3) are 
solved independently, and are iteratively coupled through 
a fixed-point method (Figure 2). A boundary element 
method is used to solve the elasticity equation (Gordeliy 
and Detournay, 2011; Crouch and Starfield, 1983); for 
the fluid flow a finite difference method is employed to 
calculate de pressure gradient ∂p/∂x(x,t), then, the net 
pressure p(x,t) is obtained by integrating ∂p/∂x(x,t) and by 
imposing the global mass conservation (3).

The coupling process starts with trial values for the 
opening w

k
 and net pressure p

k
. A new pressure p

k+1/2 
is 

obtained through the fluid flow equations, and afterwards 
the pressure is updated as p

k+1/2 
= a p

k+1/2 
+ (1 − a) p

k
 (where 

0 < a < 1/2). The updated pressure is used in the elasticity 
equation to obtain w

k+1/2
, and the updated opening is 

calculated as w
k+1 

= aw
k+1/2 

+ (1 − a)w
k
. The convergence 

of the iterative coupling is controlled by a tolerance on 
the norm of the pressure’s vector between successive 
steps. Once the convergence is reached, the quasi-static 
propagation is iteratively accomplished by a combined 
bisection-Müller method.

Figure 2: Algorithm implemented to solve the coupled problem 
of hydraulic fracture propagation 
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Numerical modelling
In this section we show the results obtained with the 
proposed strategies and compare it against those obtained by 
existing semi-analytical solutions and existing softwares. 
To compare the results, we use the dimensionless half-
length in viscosity:

In our calculations, we used a uniform grid of boundary 
elements along the fracture, with the same pressure 
tolerance of 10-3 for the coupling algorithm and for the 
propagation condition. For the plane-strain case, Figure 
3 compares our results with those obtained numerically 
by Garagash (2006) and Garagash and Detournay (2007) 
and with the semi-analytical solutions of Adachi (2001). 
It is possible to see that our results agree with the existing 
solutions.

Figure 3: Comparison of computed plane-strain dimensionless 
half-length g

1V
 by the proposed implementation against semi-

analytical solutions (Garagash, 2006; Garagash and Detournay, 
2007) and a numerical solution (Adachi, 2001) 

Figure 4 shows how the dimensionless radius g
2V

 varies 
with the dimensionless toughness T

2
, which is a description 

of the fracture’s evolution with the injection time. Our 
results were compared with those obtained by the Loramec 
software (Desroches and Thiercelin, 1993), and with the 
semi-analytical solution (Savistski and Detournay, 2002). 
The results agree with the Loramec results, however, for 

T
2
 < 0.5 differences are observed. This discrepancy is due 

to the assumption of injection as a point source, while 
Loramec takes into account the borehole radius. 

Figure 4: Comparison of the computed axisymmetric 
dimensionless radius g

2V
 by the proposed method against the 

Loramec results and the semi-analytical solution

The proposed strategies have the advantage that despite 
of the pressure singularities of the problem, they do not 
require a fine grid in the solution of the elasticity equation. 
In both cases only 10 boundary elements were used.

Diagnostic techniques
From the proposed criteria (12) and (13), it is possible to 
isolate the half-length l(t); then they could be used as an 
estimator of the fracture’s length. For the plane-strain case 
we can write (12) as: 

 

where v
tip

 = dl/dt. Integration of (16) gives an expression 
for the half-length in terms of net-pressure:

 

In (17), p(0,t) is the inlet net-pressure obtained from the 
field recording, and Q

0
 = Q

T
/h

f
, being Q

T
 (m3/s) the total 

injection rate, while h
f
 is the out-of-plane dimension of the 

2D fracture. tI and tF are the times in which the propagation 
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starts, and the time when injection ends, respectively. To 
obtain l(t) is necessary to set h

f
 and calculate the right-hand 

of (17).

The plane-strain geometry (KGD in the literature) is 
appropriate for fractures in which h

f
 > 2l, i.e. fractures 

in stratified rocks, such as sedimentary formations, or in 
treatments with a long pressurized interval (the zone where 
the fluid can enters to the rock mass). 

In the axisymmetric case, it is possible to isolate l(t) 
directly from (15):

To the author’s knowledge, it is impossible to measure the 
inlet’s opening in the course of the injection; however, it 
is possible to identify generated fractures by performing 
borehole televiewer loggings before and after the hydraulic 
fracturing.

To obtain the final radius of the fracture by (18), it is 
necessary an aperture at the end of the injection w(0,tF); 
nevertheless, the after-fracturing measurement needs to be 
done once the fluid pressure has dissipated and fracture 
has closed (t = tR). Therefore, we are capable to measure 
the ‘residual opening’ w(0,tR) generated by the water 
remaining inside the fracture (into the voids between 
asperity-supported pinched regions).

To overcome this restriction, an elliptical shape (the 
shape produced by constant pressure) is assumed for both 
openings w(0,tF) and w(0,tR). Under this assumption, 
w(0,tF) and w(0,tR) can be written in terms of their 
respective inlet’s openings, and also the volume of fracture 
is lineal with respect to the inlet´s openings.

On the other hand, in the field, it is possible to measure the 
volume of fluid that comes back to the pump system once 
the injection ends, V

rec
. Then, by mass conservation we can 

obtain w(0,tF) as: 

	

Finally, an estimation of the fracture’s radius is obtained 
replacing (19) in (18). Also, instead of using V

rec
, it is 

possible to use the volume of fluid stored into the fracture, 
which can be measured through a tiltmeter analysis.

It is important to discuss the validity of the presented 
diagnostic techniques, mainly because a rock mass contains 
pre-existing discontinuities, material heterogeneities 
and variable stresses. For plane-strain and axisymmetric 
case, the solutions are valid for low variations in material 
properties and field stresses along the propagation path.

Since the solutions do not consider the interaction between 
pre-existing discontinuities and hydraulic fractures, they 
are suited for low-fractured rock masses, or rock masses 
in which their discontinuities have hard infill and high in-
situ stresses. Also, attention must be paid to the spacing 
between hydraulic fractures; if it is small, interaction 
among fractures take a place and the solution is no longer 
valid (a measure of the “smallness” of the spacing is given 
in Bunger et al., 2012).

Conclusions 
The hydraulic fracture’s propagation analysis depends 
strongly on the parameters, which define the dominant 
dissipation mechanism; even the singularity type changes 
depending on whether the fracture generation or the viscous 
flow is the controlling phenomena. For this reason, the 
conventional approach of linear elastic fracture mechanics 
may not be appropriate for this problem.

For the numerical modelling, we proposed solution 
strategies for the plane-strain and penny-shaped 
geometries. The strategies consist in the construction of 
continuous functions of inlet’s pressure and inlet’s opening 
(for the plane-strain and penny-shaped cases, respectively), 
which depend on the dimensionless toughness T

m
. These 

functions can be used for any combination of hydraulic 
fracture’s parameters (0 ≤ T

m
 < ∞). Also, the developed 

method is efficient and with a coarse grid we can obtain 
satisfactory results, and it is not affected by inlet and tip 
singularities.

Further, we indicate the advantage of writing propagation 
conditions in terms of inlet parameters and fracture 
dimensions, because they can be converted in simple 
tools of fracture’s length assessment. These tools take into 
account; viscous dissipation, local fluid-mass conservation, 
fractures resistance and coupling effects.
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In addition to the simplicity of the developed tools, they 
could be useful when the typical tools for fracture’s length 
estimation, such as tiltmeters or micro-seismicity mapping, 
are exposed to noisy conditions such as mining-induced 
seismicity and subsidence, which can affect the results.
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