Morphometric Study of Extra-Hepatic Biliary Pathways - Study in Human Corpses

Estudio Morfométrico de las Vías Biliares Extrahepáticas – Estudio en Cadáveres Humanos

Danielly de Cássia Santos Conceição1; Giuliano R. Gonçalves3,4; José Eduardo Scabora3; Kennedy Martínez Oliveira5; Diogo Correa Maldonado2; Marcelo Cavenaghi Pereira da Silva2 & Leandro H. Grecco1,2

SUMMARY: Adverse events (AE) contribute significantly to postoperative morbidities and co-morbidities. Many AEs occur due to a lack of anatomical knowledge and its variants. Latrogenic bile duct injuries, for instance, represent a serious surgical complication of laparoscopic cholecystectomy. Anatomical knowledge for the identification and adequate drainage of all ducts is relevant and fundamental in order to avoid future errors. The objective of the study was to morphometrically analyze the bile ducts in adult human corpses. 13 livers were extracted from adult human corpses to obtain the ducts: choledochal, common hepatic and cystic. After morphological analysis, duct measurements (length and diameter) were continued using a digital caliper. The data obtained were tabulated in SPSS 21 program, performing descriptive analysis with mean and standard deviation. The averages of bile ducts were 61.05 (± 16.43) mm in length and 3.86 (± 0.72) mm in diameter. The cystic duct length and diameter averages were 33.59 (± 12.29) mm and 3.40 (± 0.79) mm, respectively. The common hepatic ducts had an average of 30.02 (± 7.19) mm in length and 3.74 (± 1.18) mm in diameter. The analyzed samples presented different values ??from those already described in the literature, where the length of the cystic ducts was greater, while the length of the common hepatic ducts was numerically smaller. This work is very significant, as the morphometric variability of the bile ducts allows for varying morphological situations that can compromise the hepatobiliar physiology.

KEY WORDS: Extrahepatic Bile Duct; Hepatic Hilum; Cystic Duct. Biliary Ducts.

INTRODUCTION

Hepatobiliary system disease is an extremely common reason for referral for general surgery. Finding anatomical variation of bile ducts during hepatic hilum dissection is common and can lead to injuries (Ismail et al., 2017; Cohen et al., 2019; Schreuder et al., 2020). Iatrogenic bile duct injuries, for example, represent a serious surgical complication of laparoscopic cholecystectomy (Limaylla-Vega & Vega-Gonzales, 2017). Anatomical knowledge, proper identification and drainage of all ducts are relevant and fundamental in order to avoid future errors (Cohen et al.; Boeva et al., 2021).

Basically bile, produced by hepatocytes, secrete the initial solution containing a large amount of bile acids, cholesterol and other organic constituents into the bile canaliculi present among liver cells. Bile secretion begins in two large collecting channels and ends in the duodenum. The bile duct is divided into intrahepatic and extrahepatic. The first occurs when there is union of segmental ducts, forming the right paramedian ducts, right lateral duct, left paramedian duct and the left lateral duct. Both ducts on the right side will concubinate to form the right hepatic duct, just as the left and left paramedian ducts will form the left hepatic duct. In addition, they are separated by the main door fissure (Standring, 2010; Abou-Khalil & Bertens, 2019; Vernon et al., 2021). The extrahepatic bile duct, on the other hand, consists of an important anatomical site for medical practice, making it indispensable for a surgeon to

1 Laboratory of Human Anatomy, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo, Brazil.
2 Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil.
3 Laboratory of Human Anatomy, Faculdade São Leopoldo Mandic, Araras, São Paulo, Brazil.
4 Laboratory of Human Anatomy, Pontifícia Universidade Católica de Campinas, São Paulo, Brazil.
5 Federal University of Minas Gerais (UFMG) Faculty of Medicine, Anatomy and Image Department, Minas Gerais, Brazil.

Received: 2021-10-27 Accepted: 2021-12-01
fully understand the anatomy, morphology and anatomical variations of this region to avoid iatrogenies (Standring; Cohen et al.; Vernon et al.).

This pathway found outside the liver is subdivided into the main and accessory pathways. The latter is formed by the gallbladder, an organ shaped like an elongated pear divided into three parts - bottom, body and neck, and also by the cystic duct. The cystic duct classically fuses with the common hepatic duct, which joins the cystic duct giving rise to the choledochal duct. The common hepatic duct usually has a diameter of four to five millimeters and an approximate length of three centimeters. The length of the choledochal duct, on the other hand, varies from five to fifteen centimeters, depending on its origin (Standring; Moore, 2018). It passes anteriorly to the accessory pancreatic duct, which joins the cystic duct giving rise to the choledochal ampoule, in the descending part of the duodenum. The ampoule is a small dilation in the muscular tunic, lifting the mucosa forming a protrusion called the greater duodenal papilla (Cohen et al.).

There are several types of junction of the cystic duct with the common hepatic duct. Depending on the type, there may be a greater or lesser risk of injury to this structure during surgical interventions. The junction can occur in parallel or angular. The distance from the bifurcation of the common hepatic duct to the duodenal ampoule will be designated high, when proximal, medium or low, when distal (Santiago et al., 2003; Plaza & Moreno, 2019).

With the anatomy of the bile ducts demonstrated, it is noteworthy that they are frequent sites of pathologies. According to Bonder & Afshah (2012), the main diseases of biliary system consist of cholestasis, biliary atresia, choledochal cysts, oriental cholangitis, primary sclerosing cholangitis, primary biliary cirrhosis, ductopenic syndrome, cholelithiasis, choledocholithiasis, acute and chronic acalculous cholecystitis. Although there are several clinical events affecting the bile ducts without changes, the bile ducts do not always have the same diameter, length and morphology. Thus, even though they do not represent a great risk in daily life, these variations in biliary anatomy occur in more than 45% of the population (Yeh et al., 2004) and can present themselves with important clinical significance during hepatobiliary interventions.

In this sense, the large number of anatomical variations of the biliary tract is a challenge for surgeons in the course of biliary surgery. Furthermore, it is not only necessary for surgeons to know the oscillations of the bile ducts. Ressureição et al. (2014), emphasizes that the radiologists’ familiarization with the anatomical findings of this region becomes an essential factor in the hepatobiliary assessment, being an important contribution to the reduction of iatrogenesis. Therefore, in order to prevent mistakes in transplants or exams, to evolve surgical techniques and expand the knowledge of liver pathologies, prior knowledge of normal biliary anatomy and its anatomopopographic variations is of paramount importance. Considering this, the present study aimed to analyze the lengths, gauges and paths of the cystic, choledochal and hepatic ducts common in corpses in order to expand knowledge on the subject.

MATERIAL AND METHOD

Ethical aspect of the research. The existing legislation in Brazil on the use of human corpses and/or organs removed from them (visceral blocks) for research and teaching purposes is based on Law 8501, of November 30, 1992 and Resolution 196/96 of the National Health Council Corroborating with the national guidelines. This study is supported ethically by CEP (Research Ethics Committee) of Centro Universitário UniMetrocamp under the favorable opinion number: 3,241,634.

Drawing / Sample. It is a quantitative, longitudinal, prospective, observational and descriptive study in 13 blocks of corpses not identified as to age and ethnicity, under the tutelage of Human Anatomy Laboratory of Centro Universitário UniMetrocamp-Campinas / SP.

Procedures. The blocks were washed, fixed with 10% formaldehyde and thoroughly dissected by direct macroscopic method, thus avoiding damage to the bile ducts (Fig. 1).

After dissection of the bile ducts, ductal length and diameter were measured using a digital caliper (150 mm / Mitutoyo®). To evaluate the ducts, three measurements were taken and arithmetic mean was considered. The photographs were obtained using a Canon camera (model: Rebel-T5).

Data analysis. The data were collected in a file containing the studied variables and these were tabulated in a database in SPSS 21 program (IBM Corp. Property). In the processing of information, the percentage method, summary measures (mean) and dispersion (standard deviation) were used.

229
In the present study, thirteen corpses were analyzed, twelve adult men (92.30%) and only one female (7.69%). Of these, eleven hepatic ducts, eight cystic ducts and nine choledochal ducts were analyzed as some of them ruptured due to handling, therefore, we excluded from the final results. In all analyzes, only a single unit was found for each of the three ducts. In four corpses, stones were found in the bile ducts and anatomical variations were not found.

As for the results, the measurements found in the bile duct obtained an average of 61.05 (±16.43) mm in length and 3.86 (±0.72) mm in diameter. For the cystic duct length and diameter averages, they were 33.59 (±12.29) mm and 3.40 (±0.79) mm, respectively. Finally, the common hepatic duct had an average of 30.02 (±7.19) mm in length and 3.74 (±1.18) mm in diameter.

Anatomical studies of extrahepatic duct routes are critical for medical procedures, pathologies that affect the region, transplants and even for certain tests. Regarding the measurements found in our study, it is notable that the lengths are within those expected.

In our study, the average cystic duct was 33.59 (±12.29) mm, a higher average than that found by Cachoeira et al. (2012), where the authors obtained an average of 19.11 (± 6.77) mm. In contrast, the review carried out by Turner & Fulcher (2001), corroborate our results, where the authors report that the average varies from 20 to 40 mm in length and 10 to 50 mm in diameter. There is evidence associating the size of the cystic duct over 30 mm in length with a greater incidence of gallstones (Caroli-Bosc et al. 1997). In our study, we did not evaluate this relationship which could give greater support to this hypothesis.

The length of the common hepatic duct has been reported in studies with cadaveric material, cholangiopancreaticography and MRI-magnetic resonance imaging (Cachoeira et al.; Khayat et al., 2014; Alves & Fonseca, 2015) in several population groups. The dimensions obtained are in a range of 19.1-36 mm, dimensions that corroborate with our measurements (30.2 mm). Some authors report that the presence of a long hepatic duct common to the union with the cystic duct is lower, which is beneficial in performing surgical interventions that can compromise the hepato-biliary tract (Tellez et al., 2018).

Finally, comparing our findings in the choledochal duct in relation to data in the literature (Cachoeira et al.; Tellez et al.), we observed a greater average in length (61.05 mm versus 60.6 mm), but with a smaller diameter (3.86 mm versus 5.29 mm). These differences can be attributed to the size of the samples evaluated in the various studies and the measurement methodology.

Furthermore, although aberrations of the common, cystic and choledochal ducts are not so rare in contemporary bibliographies, in this project we did not observe them, probably due to the reduced number of extrahepatic bile ducts studied. The possible anatomical variations, in the cystic and hepatic ducts, are of great challenge for surgeons, since the absence of immediate knowledge of the opening or morphology of the ducts generates confusing ideas and increases the possibility of obstructing any of the ducts, causing iatrogenic (Cachoeira et al.; Cohen et al.; Schreuder et al.). In line with the anatomical findings mentioned above, a literature review carried out by Andrade et al. (2017), observed that there are countless cases of anatomical variations in the bile ducts, requiring consistent observation and anatomical knowledge by the surgeon, in order to avoid iatrogenesis in these regions of extreme hepatic importance.

This work reveals to be of great anatomical/clinical significance, since the variability of bile ducts exposes variant morphological situations that can compromise the hepatobiliary physiology. Thus, the knowledge of this theme is very important for surgeons, radiologists and doctors in general, thus contributing to prevent/decrease hepatobiliary iatrogenesis.
Después de ser retratado en la literatura, las variaciones en la topografía de los conductos biliares no fueron encontradas en este estudio, aunque se debe a la muestra reducida. Además, se necesitan más estudios para investigar las variaciones en los conductos biliares y, por tanto, hay un aumento en el número de anomalías reportadas.

ACKNOWLEDGMENTS

Cuentan especial gracias al Cuerpo Anónimo, Gratitud y Respeto. Tal como se ha defendido en el consenso publicado por Iwanaga et al. (2021), el estudio anatomical sería imposible sin el primer aporte de anatomía cadavérica.

RESUMEN:

ESPECIAL AGRACIAS: A los desconocidos cuerpos, Gratitud y Respeto. Así como se ha defendido en el consenso publicado por Iwanaga et al. (2021), el estudio anatomical sería imposible sin el primer aporte de anatomía cadavérica.

RESUMO:

Os eventos adversos (EA) contribuem significativamente às morbilidades e comorbilidades pós-operatorias. Muitos EA se devem à falta de conhecimento da anatomia e suas variações. Por exemplo, as lesões iatrogénicas das vias biliares representam uma complicação cirúrgica grave da colecistectomia laparoscópica. O conhecimento anatômico para a identificação e drenagem adequado de todos os conductos é relevante e fundamental para evitar futuros erros. O objetivo do estudo foi analizar morfométricamente as vias biliares em cadáveres humanos adultos. Foram extraídos 13 hígados de cadáveres humanos adultos e se retiraram os conductos: colédoco, hepático comum e cístico. Após o análise morfométrico, foi continuado com as medições dos conductos (longitude e diâmetro) utilizando um calibrador digital. Os dados foram tabulados no programa SPSS 21, mediante análise descritivos com media e desviação estandeard. Os promedios das vías biliares foram de 61,05 (± 16,43) mm de longitude e 3,86 (± 0,72) mm de diâmetro. Os promedios de longitude e diâmetro do conducto cístico foram de 33,59 (± 12,29) mm e 3,40 (± 0,79) mm, respectivamente. Os conductos hepáticos comunes tinham um promedio de 30,02 (± 7,19) mm de longitude e 3,74 (± 1,18) mm de diâmetro. As medidas analisadas apresentar variáveis diferentes a dos já descritos na literatura, onde a longitude dos conductos císticos era maior, enquanto a longitude dos conductos hepáticos comunes foi numericamente menor. Este trabalho é significativo, devido a que a variabilidade morfométrica das vias biliares e permite identificar situações morfológicas que podem comprometer a fisiologia hepatobiliar.

PALABRAS CLAVE: Vía biliar extrahepática; Hilio hepático; Conducto cístico; Conductos biliares.

REFERENCES

Corresponding author:
Leandro Henrique Grecco
Rua Romeu Chiminasso 730 - ap 46 bl A
Chácara das Nações
CEP: 13573-588 - Valinhos
São Paulo
BRAZIL

E-mail: leandrohgrecco@gmail.com