Characterization of Upper Detour Monophonic Domination Number

M. Mohammed Abdul Khayyoom
Department of Mathematics
PTM Govt. College,
Perintalmanna, Malappuram, Kerala, India.
khayyoom.m@gmail.com

ABSTRACT
This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph \(G \) with vertex set \(V(G) \), a set \(M \subseteq V(G) \) is called minimal detour monophonic dominating set, if no proper subset of \(M \) is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by \(\gamma^+_dm(G) \). For any two positive integers \(p \) and \(q \) with \(2 \leq p \leq q \) there is a connected graph \(G \) with \(\gamma_m(G) = \gamma_{dm}(G) = p \) and \(\gamma^+_dm(G) = q \). For any three positive integers \(p, q, r \) with \(2 < p < q < r \), there is a connected graph \(G \) with \(m(G) = p, \gamma_{dm}(G) = q \) and \(\gamma^+_dm(G) = r \). Let \(p \) and \(q \) be two positive integers with \(2 < p < q \) such that \(\gamma_{dm}(G) = p \) and \(\gamma^+_dm(G) = q \). Then there is a minimal DMD set whose cardinality lies between \(p \) and \(q \). Let \(p, q \) and \(r \) be any three positive integers with \(2 \leq p \leq q \leq r \). Then, there exist a connected graph \(G \) such that \(\gamma_{dm}(G) = p, \gamma^+_dm(G) = q \) and \(|V(G)| = r \).

RESUMEN
Este artículo introduce el concepto de número de dominación de desvío monofónico superior de un grafo. Para un grafo conexo \(G \) con conjunto de vértices \(V(G) \), un conjunto \(M \subseteq V(G) \) se llama conjunto dominante de desvío monofónico minimal, si ningún subconjunto propio de \(M \) es un conjunto dominante de desvío monofónico. La cardinalidad máxima entre todos los conjuntos dominantes de desvío monofónico minimales se llama número de dominación de desvío monofónico superior y se denota por \(\gamma^+_dm(G) \). Para cualquier par de enteros positivos \(p \) y \(q \) con \(2 \leq p \leq q \) existe un grafo conexo \(G \) con \(\gamma_m(G) = \gamma_{dm}(G) = p \) y \(\gamma^+_dm(G) = q \). Para cualquiera tres enteros positivos \(p, q, r \) con \(2 < p < q < r \), existe un grafo conexo \(G \) con \(m(G) = p, \gamma_{dm}(G) = q \) y \(\gamma^+_dm(G) = r \). Sean \(p \) y \(q \) dos enteros positivos con \(2 < p < q \) tales que \(\gamma_{dm}(G) = p \) y

©2020 by the author. This open access article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
\[\gamma_{dm}^+(G) = q. \] Entonces existe un conjunto DMD mínimo cuya cardinalidad se encuentra entre \(p \) y \(q \). Sean \(p, q \) y \(r \) tres enteros positivos cualquiera con \(2 \leq p \leq q \leq r \). Entonces existe un grafo conexo \(G \) tal que \(\gamma_{dm}(G) = p, \gamma_{dm}^+(G) = q \) y \(|V(G)| = r \).

Keywords and Phrases: Monophonic number, Domination Number, Detour monophonic number, Detour monophonic domination number, Upper detour monophonic domination number.

2020 AMS Mathematics Subject Classification: 05C69, 05C12.

1 Introduction

Consider an undirected connected graph \(G(V, E) \) without loops or multiple edges. Let \(P : u_1, u_2, ... u_n \) be a path of \(G \). An edge \(e \) is said to be a chord of \(P \) if it is the join of two non adjacent vertices of \(P \). A path is said to be monophonic path if there is no chord. If \(S \) is a set of vertices of \(G \) such that each vertex of \(G \) lies on an \(u-v \) monophonic path in \(G \) for some \(u, v \in S \), then \(S \) is called monophonic set. Monophonic number is the minimum cardinality among all the monophonic sets of \(G \). It is denoted by \(m(G) \) [1,2].

A vertex \(v \) in a graph \(G \) dominates itself and all its neighbours. A set \(T \) of vertices in a graph \(G \) is a dominating set if \(N[T] = V(G) \). The minimum cardinality among all the dominating sets of \(G \) is called domination number and is denoted by \(\gamma(G) \) [4]. A set \(T \subset V(G) \) is a monophonic dominating set of \(G \) if \(T \) is both monophonic set and dominating set. The monophonic domination number is the minimum cardinality among all the monophonic dominating sets of \(G \) and is denoted by \(\gamma_m(G) \) [5,6]. A monophonic set \(M \) in a connected graph \(G \) is minimal monophonic set if no proper subset of \(M \) is a monophonic set. The upper monophonic number is the maximum cardinality among all minimal monophonic sets and is denoted by \(m^+(G) \) [9].

The shortest \(x-y \) path is called geodetic path and longest \(x-y \) monophonic path is called detour monophonic path. If every vertex of \(G \) lies on a \(x-y \) detour monophonic path in \(G \) for some \(x, y \in M \subseteq V(G) \), \(M \) could be identified as a detour monophonic set. The minimum cardinality among all the detour monophonic set is the detour monophonic number and is denoted by \(dm(G) \). A minimal detour monophonic set \(D \) of a connected graph \(G \) is a subset of \(V(G) \) whose any proper subset is not a detour monophonic set of \(G \). The maximum cardinality among all minimal detour monophonic sets is called upper detour monophonic set, denoted by \(dm^+(G) \) [10].

If \(D \) is both a detour monophonic set and a dominating set, it could be a detour monophonic dominating set. The minimum cardinality among all detour monophonic dominating sets of \(G \) is the detour monophonic dominating number(DMD number) and is denoted by \(\gamma_{dm}(G) \) [7,8]. A vertex \(v \) is an extreme vertex if the sub graph induced by its neighbourhood is complete. A vertex \(u \) in a connected graph \(G \) is a cut-vertex of \(G \), if \(G - u \) is disconnected. In this article, we consider
Characterization of Upper Detour Monophonic Domination Number

G as a connected graph of order \(n \geq 2 \) if otherwise not stated. For basic notations and terminology refer [3].

Theorem 1.1 (8). Each extreme vertex of a connected graph \(G \) belongs to every detour monophonic dominating set of \(G \).

Example 1.1. Consider the graph \(G \) given in Figure 1. Here \(M_1 = \{v_1, v_4\} \) is a monophonic set. Therefore \(m(G) = 2 \). \(M_1 \) also dominate \(G \). Hence \(\gamma(G) = 2 \). The set \(M_2 = \{v_1, v_2, v_3\} \) is a minimum detour monophonic set. Thus \(\gamma_{dm}(G) = 3 \). \(M_2 \) does not dominate \(G \). \(M_2 \cup \{v_4\} \) is a minimum DMD set. Therefore \(\gamma_{dm}(G) = 4 \).

2 UDMD Number of a Graph

Definition 2.1. A detour monophonic dominating set \(M \) in a connected graph \(G \) is called minimal detour monophonic dominating set if no proper subset of \(M \) is a detour monophonic dominating set. The maximum cardinality among all minimal detour monophonic dominating sets is called upper detour monophonic domination number and is denoted by \(\gamma_{dm}^+(G) \).

![Graph G with UDMD number 5](image)

Example 2.1. Consider the graph \(G \) given in Figure 1. The set \(M = \{v_1, v_5, v_6, v_7, v_8\} \) is a minimal DMD set with maximum cardinality. Therefore \(\gamma_{dm}^+(G) = 5 \).

Theorem 2.1. Let \(G \) be a connected graph and \(v \) an extreme vertex of \(G \). Then \(v \) belongs to every minimal detour monophonic dominating set of \(G \).

Proof. Every minimal detour monophonic dominating set is a minimum detour monophonic set. Since each extreme vertex belongs to every minimum detour monophonic dominating set, the result follows. ■
Theorem 2.2. Let \(v \) be a cut-vertex of a connected graph \(G \). If \(M \) is a minimal DMD set of \(G \), then each component of \(G - v \) have an element of \(M \).

Proof. Suppose let \(A \) is a component of \(G - v \) having no vertices of \(M \). Let \(u \) be any one of the vertex in \(A \). Since \(M \) is a minimal DMD set, there exist two vertices \(p, q \) in \(M \) such that \(u \) lies on a \(p - q \) detour monophonic path \(P : p, u, u_1, ..., u, ..., u_m = q \) in \(G \). Consider two sub-paths \(P_1 : p - u \) and \(P_2 : u - q \) of \(P \). Given \(v \) is a cut-vertex of \(G \). Therefore both \(P_1 \) and \(P_2 \) contain \(v \). Hence \(P \) is not a path. This is a contradiction. That is, each component of \(G - v \) have an element of every minimal DMD set.

Theorem 2.3. For a connected graph \(G \) of order \(n \), \(\gamma_{dm}(G) = n \) if and only if \(\gamma_{dm}(G) = n \).

Proof. First, suppose \(\gamma_{dm}(G) = n \). That is \(M = V(G) \) is the unique minimal DMD set of \(G \), so that no proper subset of \(M \) is a DMD set. Hence \(M \) is the unique DMD set. Therefore \(\gamma_{dm}(G) = n \). Conversely, let \(\gamma_{dm}(G) = n \). Since every DMD set is a minimal DMD set, \(\gamma_{dm}(G) \leq \gamma_{dm}(G) \). Therefore \(\gamma_{dm}(G) \geq n \). Since \(V(G) \) is the maximum DMD set, \(\gamma_{dm}(G) = n \). □

3 UDMD Number of Some Standard Graphs

Example 3.1. Complete bipartite graph \(K_{m,n} \)

For complete bipartite graph \(G = K_{m,n} \),

\[
\gamma_{dm}^+(G) = \begin{cases}
2, & \text{if } m = n = 1; \\
n, & \text{if } n \geq 2, m = 1; \\
4, & \text{if } m = n = 3 \\
\max\{m, n\}, & \text{if } m, n \geq 2, m, n \neq 3
\end{cases}
\]

Proof. Case (i): Let \(m = n = 1 \). Then \(K_{m,n} = K_2 \). Therefore \(\gamma_{dm}^+(G) = 2 \).

Case (ii): Let \(n \geq 2, m = 1 \). This graph is a rooted tree. There are \(n \) end vertices. All these are extreme vertices. Therefore they belong to every DMD set and consequently every minimal DMD set.

Case (iii): If \(m = n = 3 \), then exactly two vertices from both the particians form a minimal DMD set.

Case (iv): Let \(m, n \geq 2, m, n \neq 3 \). Assume that \(m \leq n \). Let \(A = \{a_1, a_2, ... a_m\} \) and \(B = \{b_1, b_2, ... b_n\} \) be the partitions of \(G \). First, prove \(M = B \) is a minimal DMD set. Take a vertex \(a_j, 1 \leq j \leq m \), which lies in a detour monophonic path \(b_1a_jb_k \) for \(k \neq j \) so that \(M \) is a detour monophonic set. They also dominate \(G \). Hence \(M \) is a DMD set.
Next, let S be any minimal DMD set such that $|S| > n$. Then S contains vertices from both the sets A and B. Since A and B are themselves minimal DMD sets, they do not completely belong to S. Note that if S contains exactly two vertices from A and B, then it is a minimum DMD set. Thus $\gamma^+_d(G) = n = \max\{m, n\}$.

Example 3.2. Complete graph K_n

For complete graph $G = K_n$, $\gamma^+_d(G) = n$.

Proof. For a complete graph G, every vertex in G is an extreme vertex. By theorem 2.1 they belong to every minimal DMD set.

Example 3.3. Cycle graph C_n

For Cycle graph $G = C_n$ with n vertices,

$$\gamma^+_d(G) = \begin{cases} 3, & \text{if } n \leq 7, n \neq 4 \\ 2, & \text{if } n = 4 \\ 4 + \frac{n - 7 - r}{3}, & \text{if } n \geq 8, \; n - 7 \equiv r \mod(3) \end{cases}$$

Proof. For $n \leq 7$ the results are trivial. For $n \geq 8$, let $C_n : v_1, v_2, v_3, ..., v_n, v_1$ be the cycle with n vertices. Then the set of vertices $\{v_1, v_3, v_{n-1}\}$ is a minimal detour monophonic set but not dominating. This set dominates only seven vertices. There are $n - 7$ remaining vertices. If r is the reminder when $n - 7$ is divided by 3, then $\frac{n - 7 - r}{3} + 1$ vertices dominate the remaining vertices. Therefore every minimal DMD set contains $4 + \frac{n - 7 - r}{3}$ vertices.

4 Characterization of $\gamma^+_d(G)$

Theorem 4.1. For any two positive integers p and q with $2 \leq p \leq q$ there is a connected graph G with $\gamma_m(G) = \gamma_d(G) = p$ and $\gamma^+_d(G) = q$.

Proof. Construct a graph G as follows. Let $C_6 : u_1, u_2, u_3, u_4, u_5, u_6, u_1$ be the cycle of order 6. Join $p - 1$ disjoint vertices $M_1 = \{x_1, x_2, ..., x_{p-1}\}$ with the vertex u_1. Let $M_2 = \{y_1, y_2, ..., y_{q-p-1}\}$ be a set of $q - p - 1$ disjoint vertices. Add each vertex in M_2 with u_4 and u_6. Let x_{p-1} be adjacent with u_2 and u_6. This is the graph G given in Figure 2.

Since all vertices except x_{p-1} in M_1 are extreme, they belong to every minimum monophonic dominating set and DMD set. The set $M = M_1 \cup \{u_4\}$ is a minimum monophonic dominating set. Therefore $\gamma_m(G) = p$. Moreover, the set of all vertices in M form a DMD set and is minimum. That is $\gamma_d(G) = p$.

Next, we prove that $\gamma^+_\text{dm}(G) = q$. Clearly $N = M_1 \cup M_2 \cup \{u_5, u_6\}$ is a DMD set. N is also a minimal DMD set of G. For the proof, let N' be any proper subset of N. Then there exists at least one vertex $u \in N$ and $u \notin N'$. If $u = y_i$, for $1 \leq i \leq q - p - 1$, then y_i does not lie on any $x - y$ detour monophonic path for some $x, y \in N'$. Similarly if $u \in \{u_5, u_6, x_{p-1}\}$, then that vertex does not lie on any detour monophonic path in N'. Thus N is a minimal DMD set. Therefore $\gamma^+_\text{dm}(G) \geq q$.

$\gamma_m(G) = \gamma_\text{dm}(G) = p$ and $\gamma^+_\text{dm}(G) = q$.

Note that N is a minimal DMD set with maximum cardinality. On the contrary, suppose there exists a minimal DMD set, say T, whose cardinality is strictly greater than q. Then there is a vertex $u \in T, u \notin N$. Therefore $u \in \{u_2, u_3, u_4\}$. If $u = u_4$, then $M_1 \cup \{u_4\}$ is a DMD set properly contained in T which is a contradiction. If $u = u_3$, then the set $M_1 \cup \{u_3, u_5\}$ is a DMD set which is a proper subset of T and is a contradiction. If $u = u_2$, then the set $(N - \{u_6\}) \cup \{u_2\}$ is a DMD set properly contained in T and is a contradiction. Thus $\gamma^+_\text{dm}(G) = q$.

Theorem 4.2. For any three positive integers p, q, r with $2 < p < q < r$, there is a connected graph G with $m(G) = p$, $\gamma_\text{dm}(G) = q$ and $\gamma^+_\text{dm}(G) = r$.

Proof. Let G be the graph constructed as follows. Take $q - p$ copies of a cycle of order 5 with each cycle C_i has a vertex set $\{d_i, e_i, f_i, g_i, h_i\}$, for $1 \leq i \leq q - p$. Join each e_i with all other vertices in C_i. Also join the vertex f_{i-1} of C_{i-1} with the vertex d_i of C_i. Let $\{u, v\}$ and $\{b_1, b_2, ..., b_{r-q+1}\}$ be two sets of mutually non adjacent vertices. Join each b_i with u and v, for $1 \leq i \leq r - q + 1$. Join another $p - 2$ pendant vertices with u and one pendant vertex with d_1. This is the graph G given in Figure 3.

The set $M_1 = \{a_0, a_1, a_2, ..., a_{p-2}\}$ is the set of all extreme vertices and belongs to every monophonic dominating set and DMD set (Theorem 1.1). Clearly M_1 is not monophonic. But $M_1 \cup \{v\}$ is a monophonic set and is minimum. Therefore $m(G) = p$. Take $M_2 = \{e_1, e_2, ..., e_{q-p}\}$. Then $M_1 \cup M_2 \cup \{v\}$ is a DMD set and is minimum. Therefore $\gamma_\text{dm}(G) = p - 1 + q - p + 1 = q$. ■
Let $M_3 = \{b_1, b_2, ..., b_{r-q+1}\}$. Then $M = M_1 \cup M_2 \cup M_3$ is a DMD set. Now M is a minimal DMD set. On the contrary, suppose N is any proper DMD subset of M so that there exists at least one vertex in M which does not belong to N. Let $u \in M$ and $u \notin N$. Clearly $u \notin M_4$ since it is the set of all extreme vertices. If $u = e_i$ for some i, then the vertex e_i does not belong to any detour monophonic path induced by N. Therefore $u \notin M_2$. Similarly $u \notin M_3$. This is a contradiction. Hence M is a minimal DMD set with maximum cardinality. Therefore $\gamma_{dm}^+(G) = |M_1| + |M_2| + |M_3| = (p-1) + (q-p) + (r-q+1) = r$.

Theorem 4.3. Let p and q be two positive integers with $2 < p < q$ such that $\gamma_{dm}(G) = p$ and $\gamma_{dm}^+(G) = q$. Then there is a minimal DMD set whose cardinality lies between p and q.

Proof. Consider three sets of mutually disjoint vertices $M_1 = \{a_1, a_2, ..., a_{q-n+1}\}$, $M_2 = \{b_1, b_2, ..., b_{n-p+1}\}$ and $M_3 = \{x, y, z\}$. Join each vertex a_i with x and z and each vertex b_j with y and z. Add $p-2$ pendent vertices $M_4 = \{c_1, c_2, ..., c_{p-2}\}$ with the vertex y. This is the graph G given in Figure 4. Since M_4 is the set of all extreme vertices, it belongs to every DMD set. But M_4 is not a DMD set. The set $M = M_4 \cup \{x, z\}$ is a minimum DMD set. Therefore $\gamma_{dm}(G) = p$.

Consider the set $N = M_1 \cup M_2 \cup M_4$. We claim N is a minimal DMD set with maximum cardinality. On the contrary, suppose there is a set $N' \subset N$ which is a DMD set of G. Then there exists at least one vertex, say u in N which does not belong to N'. Clearly $u \notin M_4$ since it is the set of all extreme vertices. If $u \in M_1$, then $u = a_i$ for some i. Then the vertex a_i does not lie on any detour monophonic path, which is a contradiction. Similarly, if $u \in M_2$, we get a contradiction. Thus N is a minimal DMD set. Therefore $\gamma_{dm}^+(G) \geq q$. \]
Figure 4: Graph G with $\gamma_{dm}(G) = p$ and $\gamma^+_{dm}(G) = q$

Next, we claim that N has the maximum cardinality of any minimal DMD set. If $\gamma^+_{dm}(G) > q$, there is at least one vertex $v \in V(G)$, $v \notin N$ and belongs to a minimal DMD set. Therefore $v \in M_3$. If $v = x$, then the set $M_2 \cup M_4 \cup \{v\}$ is a minimal DMD set having less than q vertices. Similarly if $v = z$, then the set $M_1 \cup M_4 \cup \{v\}$ is a minimal DMD set. For $v = y$, the set $N \cup \{y\}$ is not a minimal DMD set. Therefore $\gamma^+_{dm}(G) \leq q$.

Let n be any number which lies between p and q. Then there is a minimal DMD set of cardinality n. For the proof, consider the set $T = M_2 \cup M_4 \cup \{x\}$. T is a minimal DMD set. If T is not a minimal DMD set, there is a proper subset T' of T such that T' is a minimal DMD set. Let $u \in T$ and $u \notin T'$. Since each vertex in M_4 is an extreme vertex, $v \notin M_4$. If $u = x$, then the vertex u is not an internal vertex of any detour monophonic path in T'. A similar argument may be made if $u \in M_2$. This leads to a contradiction. Therefore T is a minimal DMD set with cardinality $(n - p + 1) + (p - 2) + 1 = n$.

Theorem 4.4. Let p, q and r be any three positive integers with $2 \leq p \leq q \leq r$. Then, there exists a connected graph G such that $\gamma_{dm}(G) = p$, $\gamma^+_{dm}(G) = q$ and $|V(G)| = r$.

Proof. Let $K_{1,p}$ is a star graph with leaves set $M_1 = \{u_1, u_2, \ldots, u_p\}$ and let u be the support vertex of $K_{1,p}$. Insert $r - q - 1$ vertices $M_2 = \{v_1, v_2, \ldots, v_{r-q-1}\}$ in the edges uu_i respectively for $1 \leq i \leq r - q - 1$. Add $q-p$ vertices $M_3 = \{x_1, x_2, \ldots, x_{q-p}\}$ with this graph and join each x_i with u and u_1. This is the graph G as shown in Figure 5. Here $|V(G)| = (q-p) + p + (r-q-1) + 1 = r$. The length of a detour monophonic path is 4.
Let $T = M_1 - \{u_1\}$. All the vertices in T are extreme vertices and belong to all DMD sets and minimal DMD sets. Clearly M_1 is a DMD set with minimum cardinality. Therefore $\gamma_{dm}(G) = p$. Let $N = T \cup M_3 \cup \{v_1\}$. Then $|N| = (p - 1) + (q - p) + 1 = q$. We claim that N is a minimal DMD set with maximum cardinality.

On the contrary, suppose there is a proper subset N' of N which is a minimal DMD set of G. Then there exists at least one vertex $x \in N, x \notin N'$. Clearly $x \notin T$. If $x \in M_3$, then $x = x_i$ for some $i, 1 \leq i \leq q - p$. Then the vertex x_i does not lie on any $u - v$ detour monophonic path for $u, v \in N'$. If $x = v_1$ then v_1 does not lies on any detour monophonic path in N'. Thus no such vertex x exists. This is a contradiction. Therefore $\gamma^+_{dm}(G) \geq q$.

To prove maximum cardinality of N, suppose there exists a minimal DMD set S with $|S| > q$. Since S contains T, the set of all extreme vertices, the vertex x lies on some $u - v$ detour monophonic path for all $x \in \{u, v_2, v_3, ..., v_{r-q-1}\}$. Now S is a minimal DMD set having more than q vertices and $u, v_2, v_3, ..., v_{r-q-1} \notin S$. Therefore $S = \{v_1\} \cup M_3 \cup \{u_1\} \cup T$. Then N is properly contained in S. This is a contradiction. Therefore $\gamma^+_{dm}(G) = q$. Hence the proof. \square
References

