SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

VENTURA-CANSECO, Lucía María Cristina et al. Sugarcane Molasse and Whey as Additives in the Silage of Lemongrass (Cymbopogon citratus [DC.] Stapf) Leaves. Chilean J. Agric. Res. [online]. 2012, vol.72, n.1, pp. 87-91. ISSN 0718-5839.  http://dx.doi.org/10.4067/S0718-58392012000100014.

    AOAC. 1980. Official methods of analysis. 14th ed. Association of Official Analytical Chemists (AOAC), Washington, DC., USA. [ Links ]

    Babayemi, O.J. 2009. Silage quality, dry matter intake and digestibility by West African dwarf sheep of Guinea grass (Panicum maximum cv. Ntchisi) harvested at 4 and 12 week regrowths. African Journal of Biotechnology 8:3983-3988. [ Links ]

    Bautista-Truiillo, G.U., M. Cobos, L.M.C. Ventura-Canseco, T. Ayora-Talavera, M. Abud-Archila, M.A. Oliva-Llaven, et al. 2009. Effect of sugarcane molasses and whey on silage quality of maize. Asian Journal Crop Science 1:34-39. [ Links ]

    Cao, Y., M. De-jing, L. Jian, and J. Jie. 2008. Statistical optimization of xylanase production by Aspergillus niger AN-13 under submerged fermentation using response surface methodology. African Journal of Biotechnology 7:631-638. [ Links ]

    Daniels, L.B., M.J. Smith, O.T. Stallcup, and J.M. Rakes. 1983. Nutritive value of ensiled broiler litter for cattle. Animal Feed Science and Technology 8:19-24. [ Links ]

    Davies, Z.S., R.J. Gilbert, R.J. Merry, D.B. Kell, M.K. Theodorou, and G.W. Griffith. 2000. Efficient improvement of silage additives by using genetic algorithms. Applied Environmental Microbiology 66:1435-1443. [ Links ]

    De Lurdes, M., E. Dapkeviius, I. Batista, M.J.R. Nout, F.M. Rombouts, and J.H. Houben. 1998. Lipid and protein changes during the ensilage of blue whiting (Micromesistius poutassou Risso) by acid and biological methods. Food Chemistry 63:97-102. [ Links ]

    Driehuis, F., and P.G. Van Wikselaar. 2001. Determination of microbial protein in perennial ryegrass silage. Grass and Forage Science 56:75-83. [ Links ]

    Goering, H.K., and P.J. Van Soest. 1970. Forage fiber analysis (apparatus, reagents, procedures and some applications). USDA Agricultural Handbook N° 379. p. 1-37. USDA, Washington D.C., USA. [ Links ]

    Ha, E., and M.B. Zemel. 2003. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). Journal of Nutrition Biochemistry 14:251-258. [ Links ]

    Haigh, P.M. 1999. Effluent production from grass silage treated with additives and made in large-scale bunker silos. Grass and Forage Science 54:208-218. [ Links ]

    Hetta, M., J.W. Cone, A.M. Gustavsson, and K. Martinsson. 2003. The effect of additives in silages of pure timothy and timothy mixed with red clover on chemical composition and in vitro rumen fermentation characteristics. Grass and Forage Science 58:249-257. [ Links ]

    Kahi, A.K., and T.O. Rewe. 2008. Biotechnology in livestock production: Overview of possibilities for Africa. African Journal of Biotechnology 7:4984-4991. [ Links ]

    Kaya, S., and M.E. Caliskan. 2010. Effects of molasses and ground wheat additions on the quality of groundnut, sweet potato, and Jerusalem artichoke tops silages. African Journal of Agricultural Research 5:829-833. [ Links ]

    Kondo, M., N. Naoki, K. Kazumi, and H.O. Yolota. 2004. Enhanced lactic acid fermentation of silage by the addition of green tea waste. Journal of Science Food Agriculture 84:728-734. [ Links ]

    Kung, L., and R. Shaver. 2002. Interpretation and use of silage fermentation analysis reports. Focus on Forage Vol. 3. N° 13. University of Wisconsin, Madison, Wisconsin, USA. [ Links ]

    Lin, C., K.K. Bolsen, B.E. Brent, and D.Y.C. Fung. 1992. Epiphytic lactic acid bacteria succession during pre-ensiling and ensiling periods of alfalfa and maize. Journal of Applied Bacteriology 73:375-387. [ Links ]

    Madrid, J., A. Martínez-Teruel, F. Hernández, and M.D. Megías. 1999. A comparative study on the determination of lactic acid in silage by colorimetric, high-performance liquid chromatography and enzymatic methods. Journal of Science Food Agriculture 79:1722-1726. [ Links ]

    Mannu, L., G. Riu, R. Comunian, M.C. Fozzi, and F. Scintu. 2002. A preliminary study of lactic acid bacteria in whey starter culture and industrial Pecorino Sardo ewe's milk cheese: PCR-identification and evolution during ripening. International Dairy Journal 12:17-26. [ Links ]

    Martínez-Avalos, A.M.M., G.D. Mendoza, M.A. Cobos, S. González, C.M. García-Bojalil, and R. Bárcena. 1998. Nutritional evaluation of cattle manure silage with molasses for ruminants. Animal Feed Science and Technology 70:257-264. [ Links ]

    McKendrick, E.J., D.J. Roberts, and N.W. Offer. 2003. The value of malt distillers's grains ensiled with molasses sugar beet pellets as a feed for dairy cows. Grass and Forage Science 58:287-294. [ Links ]

    Megías, M.D., A. Martínez-Teruel, and M.R. Hérnandez. 1999. Potential environmental impact of effluents from the Artichoke (Cynara scolymus L.) byproduct ensiling process using additives. Journal of Agricultural and Food Chemistry 47:2455-2458. [ Links ]

    Meneses, M., M.D. Megías, J. Madrid, A. Martínez-Teurel, F. Hernández, and J. Oliva. 2007. Evaluation of the phytosanitary, fermentative and nutritive characteristics of the silage made from crude artichoke (Cynara scolymus L.) by-product feeding for ruminants. Small Ruminant Research 70:292-296. [ Links ]

    Omokanye, A.T., O.S. Onifade, P.E. Olorunju, A.M. Adamu, R.J. Tanko, and R.O. Balogun. 2001. The evaluation of dual purpose groundnut (Arachis hypogaea) varieties for fodder and seed production in Shika, Nigeria. Journal of Agriculture Science 136:75-79. [ Links ]

    Opitz von Boberfeld, W. 2001. Effect of homofermentative lactic acid bacteria concentrates on the aerobic stability of grass silage. German Journal of Agronomy 5:7-14. [ Links ]

    Outinen, M., P. Rantamaki, and A. Heino. 2010. Effect of milk pretreatment on the whey composition and whey powder functionality. Journal of Food Science 75:E1-10. [ Links ]

    Rong, Y., H. Jian-Guo, H. Xian, L. Zhiqiang, and L. Yuzhu. 2010. Effects of different corn silage: Alfalfa silage ratios and full fat extruded soybeans on milk composition, conjugated linoleic acids content in milk fat and performance of dairy cows. African Journal of Biotechnology 9:5465-5464. [ Links ]

    SAS Institute. 1989. Statistic guide for personal computers. Version 6.04. SAS Institute, Cary, North Carolina, USA. [ Links ]

    Shafaghat, H., G.D. Najafpouri, P.S. Rezaei, and M. Sharifzadeh. 2010. Optimal growth of Saccharomyces cerevisiae (PTCC 24860) on pretreated molasses for the ethanol production: the application of the response surface methodology. Chemical Industry & Chemical Engineering Quarterly 16:199-206. [ Links ]

    Taylor, K.A.C.C. 1996. A simple colorimetric assay for muramic acid and lactic acid. Applied Biochemistry and Biotechnology 56:49-58. [ Links ]

    Weinberg, Z.G., and R.E. Muck. 1996. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Review 19:53-68. [ Links ]

    Zhang, J.G., O. Tanaka, R. Uegaki, Y. Cali, and R. Kobayashi. 2000. The effect of inoculation and additives on D(-) and L(+) lactic acid production and fermentation quality of guineagrass (Panicum maximum Jacq.) silage. Journal of Science Food Agriculture 80:2186-2189. [ Links ]