SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

SOTELO P, Julio et al. Análisis cuantitativo de variables hemodinámicas de la aorta obtenidas de 4D flow. Rev. chil. radiol. [online]. 2012, vol.18, n.2, pp.62-67. ISSN 0717-9308.

    1. Lloyd-Jones D, Adams R, Browm T, Carnethon M, Dai S, De Simone G, et al. Heart Disease and Stroke Statistic 2010 Update: A Report From the American Heart Association. Circulation 2010; 121: 46-215. [ Links ]

    2. Medina E, Kaempffer A. Enfermedades cardiovasculares en Chile. Aspectos epidemiolgicos. Rev Chil Cardiol 2007; 26: 219-226. [ Links ]

    3. Axel L, Lim R. Clinical Cardiac MRI Techniques. Kwong RY, (Ed). Cardiovascular Magnetic Resonance Imaging. 1st ed. Totowa, New Jersey: Humana Press; 2008. pp. 33-77. [ Links ]

    4. Hope T, Markl M, Wigstrm L, Alley M, Miller D, Herfkens R. Comparison of Flow Patterns in Ascending Aortic Aneurysms and Volunteers Using Four-Dimensional Magnetic Resonance Velocity Mapping. J Magn Reson Imaging 2007; 26: 1471-1479. [ Links ]

    5. Maimon O, Rokach L. Introduction to Knowledge Discovery and Data Mining. Maimon O, Rokach L, (Eds). Data Mining and Knowledge Discovery Handbook. 2nd ed. New York: Springer; 2010. pp. 1-15. [ Links ]

    6. Che-Wei L, Jeen-Shing W, Pau-Choo C. Mining Physiological Conditions from Heart Rate Variability Analysis. IEEE Comp Intelligence Magazine 2010; 50-58. [ Links ]

    7. Kuo W, Chang R, Chen D, Lee C. Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images. Breast Cancer Res Treat 2001; 66: 51-57. [ Links ]

    8. Ibrahim N, Kudus A, Daud I, Abu Bakar M. Decision Tree for Competing Risks Survival Probability in Breast Cancer Study. WASET 2008; 38: 15-19. [ Links ]

    9. Elsayad A. Diagnosis of Breast Tumor using Boosted Decision Trees. ICGST-AIML Journal. 2010; 10: 1-11. [ Links ]

    10. Jegelevicius D, Lukosevicius A, Paunksnis A, Barzdziukas V. Application of Data Mining Technique for Diagnosis of Posterior Uveal Melanoma. Inst Mathematics & Informatics 2002; 13: 455-464. [ Links ]

    11. Joshi S, Deepa P, Venugopal K, Patnaik L. Statistical classification of magnetic resonance images of brain employing random forest classifier. J Machine Intelligence 2009; 1: 55-61. [ Links ]

    12. Bock J, Frydrychowicz A, Stalder AF, et al. 4D Phase Contrast MRI at 3 T: Effect of Standard and Blood-Pool Contrast Agents on SNR, PC-MRA, and Blood Flow Visualization. Magn Reson Med 2010; 63: 330-338. [ Links ]

    13. Haidekker M. Survey of Fundamental Image Processing Operators. Haidekker M, (Ed). Advanced Biomedical Image Analysis. 1st ed. Hoboken, New Jersey; Wiley; 2011. pp. 23-69. [ Links ]

    14. Yohannes Y, Webb P. Overview of CART. Yohannes Y, Webb P, (Eds). Classification and regression trees, CART. California; IFPRI; 1999. pp. 1-3 [ Links ]

    15. Schiattino I, Silva C. rboles de Clasificacin y Regresin: Modelos Cart. Ciencia & Trabajo 2008; 30: 161-166. [ Links ]