SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

COLLAO, Macarena; PIZARRO, Pamela  y  ROJO, Oscar. An upper bound on the largest signless Laplacian of an odd unicyclic graph. Proyecciones (Antofagasta) [online]. 2012, vol.31, n.1, pp. 39-49. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172012000100005.

    [1] D. Cvetkovic, P. Rowlinson, S. K. Simic, Signless Laplacian of finite graphs, Linear Algebra Appl. 423, pp. 155-171, (2007). [ Links ]

    [2] D. Cvetkovic, P. Rowlinson, S. K Simic, Eigenvalue bounds for the signless Laplacian, Publications de L'institute Mathematique, Nou-velle serie tome 81(95), pp. 11-27, (2007). [ Links ]

    [3] R. Diestel, Graph Theory, Electronic Editions 2005, Springer-Verlag Hiedlberg, New York. [ Links ]

    [4] G. H. Golub and C. F. van Loan, Matrix Computations, 2nd ed. ,John Hopkins University Press, (1989). [ Links ]

    [5] C. S. Oliveira, L. S. de Lima, N. M. M. de Abreu, P. Hansen, Bounds on the index of the signless Laplacian of a graph, Discrete Applied Mathematics 158, pp. 355-360, (2010). [ Links ]

    [7] S. Hu, The largest eigenvalue of unicyclic graphs, Discrete Math. 307, pp. 280-284, (2007). [ Links ]

    [8] Y. Ikebe, T. Inagaki, S. Miyamoto, The Monotonicity Theorem, Cauchy's Interlace Theorem and Courant-Fisher Theorem, American Mathematical Monthly Vol. 94, No. 4, April, pp. 352-354, (1987). [ Links ]

    [9] S. Kouachi, Eigenvalues and eigenvectors of tridiagonal matrices, Electronic Journal of Linear Algebra 15, pp. 115-133, (2006). [ Links ]

    [10] O. Rojo, New upper bounds on the spectral radius of unicyclic graphs, Linear Algebra Appl. 428, pp. 754-764, (2008). [ Links ]

    [11] O. Rojo, Spectra of copies of a generalized Bethe tree atached to any graph, Linear Algebra Appl. 431, pp. 863-882, (2009). [ Links ]

    [12] L. N. Trefethen and D. Bau, III Numerical Linear Algebra, Society for Industrial and Applied Mathematics, (1997). [ Links ]

    [13] R. Varga, Matrix Iterative Analysis, Theory, Prentice-Hall, Inc.,(1965). [ Links ]