SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artículo

BATIR, Necdet  y  CHEN, Chao-Ping. Improving some sequences convergent to Euler-Mascheroni constant. Proyecciones (Antofagasta) [online]. 2012, vol.31, n.1, pp. 29-38. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172012000100004.

    [1] N. Batir, Sharp bounds for the psi function and harmonic numbers, Math. Inequal. Appl., No. 4, pp. 917-925, (2011). [ Links ]

    [2] C-P Chen, C. Mortici, New sequences converging towards the Euler-Mascheroni constant, Computer and Mathematics with Applications, doi:10.1016/j.camwa.2011.03.099, (2011). [ Links ]

    [4] C. Mortici, New approximation of the gamma function in terms of the digamma function, Appl. Math. Lett., 23, No. 1, pp. 97-100, (2010). [ Links ]

    [5] C. Mortici, Fast convergences toward Euler-Mascheroni constant, Comput. Appl. Math., 29, No. 3, pp. 479-491, (2010). [ Links ]

    [6] C. Mortici, On new sequences converging towards the Euler-Mascheroniconstant, Computer Math. Appl., 59, No. 8, pp. 2610-2614, (2010). [ Links ]

    [7] C. Mortici, Optimizing the rate of convergence of some new classes of sequences convergent to Euler constant, Analysis Appl., 8, No. 1, pp.99-107, (2010). [ Links ]

    [8] C. Mortici, A quicker convergence toward the constant with the logarithm term involving the constant e, Carpathian J. Math., 26, No. 1,pp. 86-91, (2010). [ Links ]

    [9] T. Negoi, A faster convergence to the constant of Euler, Gazeta Matematica, Seria A, 15, No. 94, pp. 113, (1997). [ Links ]

    [10] D. W. Temple, A geometric look at sequences that converge to Euler'sconstant, College Math. J., 37, pp. 128-131, (2006). [ Links ]

    [11] D. W. Temple, A quicker convergences to Euler's constant, Amer.Math. Monthly, 100 (5), pp. 468-470,(1993). [ Links ]

    [12] R. M. Young, Euler's constant, Math. Gaz., 75, pp. 187-190, (1991). [ Links ]