SciELO - Scientific Electronic Library Online

 
vol.18 número1S-paracompactness modulo an idealParametrised databases of surfaces based on Teichmüller theory índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Cubo (Temuco)

versão On-line ISSN 0719-0646

Cubo vol.18 no.1 Temuco  2016

http://dx.doi.org/10.4067/S0719-06462016000100005 

 

Submanifolds of a (k,μ)-Contact Manifold

M.S. Siddesha, C.S. Bagewadi

Department of Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, INDIA. mssiddesha@gmail.com, prof_bagewadi@yahoo.co.in


ABSTRACT

The object of the present paper is to study submanifolds of (k,μ)-contact manifolds. We find the necessary and sufficient conditions for a submanifolds of (k,μ)-contact manifolds to be invariant and anti-invariant. Also, we examine the integrability of the distributions involved in the definition of CR-submanifolds of (k,μ)-contact manifolds.

Keywords and Phrases: (k,μ)-contact manifold; invariant submanifold; anti-invariant submanifold.

2010 AMS Mathematics Subject Classification: 53C15, 53C40.


RESUMEN

El objeto del presente artículo es estudiar subvariedades de variedades (k,μ)-contacto. Encontramos las condiciones necesarias y suficientes para que subvariedades de variedades (k,μ)-contacto sean invariantes y anti-invariantes. También examinamos la integrabilidad de las distribuciones involucradas en la definición de subvariedades CR de variedades (k,μ)-contacto.


 

References

[1] Avijit Sarkar,Md. Showkat Ali and Dipankar Biswas, On submanifolds of (k,μ)-contact metric manifolds, Dhaka Univ. J. Sci. 61(1) (2013), 93-96.

[2] Avik De, A note on invariant submanifolds of (k,μ)-contact manifolds, Ukranian Mathematical J. 62(11) (2011), 1803-1809.

[3] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math., 509, Springer-Verlag, Berlin (1976).         [ Links ]

[4] D.E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-214.         [ Links ]

[5] D.E. Blair and K. Ogiue Geometry of integral submanifolds of a contact distribution, Illinois J. Math., 91 (1975), 269-276.         [ Links ]

[6] A. Benjancu, Geometry of CR-submanifolds, D. Reidel Publ. C0., Holland (1986).         [ Links ]

[7] B.Y. Chen, Riemannian submanifolds: a survey, arXiv:1307.1875v1 [math.DG] 7 Jul (2013).

[8] B.Y. Chen and P. Verheyen, Totally umbilical submanifolds of Kaehler manifolds, Bull. Math. Soc. Belg., 35 (1983), 27-44.         [ Links ]

[9] U.C. De, Andnan Al-Aqeel and A.A. Shaikh, Submanifolds of a lorentzian para-Sasakian manifold, Bull. of Malays. Math. Sci. Soc. 28(2) (2005), 223-227.         [ Links ]

[10] H. Endo, Invariant submanifolds in contact metric manifolds, Proc. Estonian Acad. Sci. Phys. Math. 39 (1990), 1-8.         [ Links ]

[11] M. Kon, Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep., 27 (1973), 330-336.         [ Links ]

[12] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), 277-290.         [ Links ]

[13] B.C. Montano, Di Terlizzi and Mukut Mani Tripathi, Invariant submanifolds of contact (k,μ)- manifolds, Glasgow Math J., 50 (2008), 499-507.

[14] M.S. Siddesha and C.S. Bagewadi, On slant submanifolds of (k,μ)-contact manifold, Differential Geometry- Dynamical Systems, 18 (2016), 123-131.

[15] M.S. Siddesha and C.S. Bagewadi, On some classes of invariant submanifolds (k,μ)-contact manifold, Journal of Informatics and Mathematical Sciences (Accepted for publication).

[16] M.M. Tripathi, T. Sasahara and J.S. Kim, On invariant submanifolds of contact metric manifolds, Tsukuba J. Math. 29(2) (2005), 495-510.         [ Links ]

[17] L. Vrancken, Locally symmetric submanifolds of the nearly Kaehler S6, Algebras Groups Geom., 5 (1988), 369-394.         [ Links ]

[18] K. Yano and S. Ishihara, Submanifolds with parallel mean curvature vector, J. Differential Geometry, 6 (1971), 95-118.         [ Links ]

[19] K. Yano and M. Kon, CR-submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser, Boston-Basel, (1983).         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons