SciELO - Scientific Electronic Library Online

 
vol.18 número1On generalized closed sets in generalized topological spacesSubmanifolds of a (k,μ)-Contact Manifold índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Cubo (Temuco)

versão On-line ISSN 0719-0646

Cubo vol.18 no.1 Temuco  2016

http://dx.doi.org/10.4067/S0719-06462016000100004 

 

S-paracompactness modulo an ideal

José Sanabria1, Ennis Rosas1, Neelamegarajan Rajesh2, Carlos Carpintero1, Amalia Gómez1

1 Departamento de Matemáticas, Universidad de Oriente, Cumaná, Venezuela.

2 Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India. jesanabri@gmail.com, ennisrafael@gmail.com, nrajesh_topology@yahoo.co.in, carpintero.carlos@gmail.com, amaliagomez1304@gmail.com


ABSTRACT

The notion of S-paracompactnessmodulo an ideal was introduced and studied in [15]. In this paper, we introduce and investigate the notion of αS-paracompact subset modulo an ideal which is a generalization of the notions of αS-paracompact set [1] and α-paracompact set modulo an ideal [7].

Keywords and Phrases: semi-open, ideal, S-paracompact. Research Partially Suported by Consejo de Investigación UDO.

2010 AMS Mathematics Subject Classification: 54A05, 54D20.


RESUMEN

La noción de S-paracompacidad módulo un ideal fue introducida y estudiada en [15]. En este artículo, introducimos e investigamos la noción de un subconjunto αS-paracompacto módulo un ideal, que es una generalización de las nociones de conjunto αS-paracompacto [1] y conjunto α-paracompacto módulo un ideal [7].


 

References

[1] K. Y. Al-Zoubi: S-paracompact spaces, Acta. Math. Hungar. 110 (1-2) (2006), 165-174.         [ Links ]

[2] D. Andrijević: Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32.         [ Links ]

[3] C. E. Aull, α-paracompact subsets, Proc. Second Prague Topological Symp. 1966, Acad. Pub. House Czechoslovak Acad. Sci., Prague (1967), 45-51.

[4] S. G. Crossley, S. K. Hildebrand: Semi-closure, Texas J. Sci. 22 (1971), 99-112.         [ Links ]

[5] S. G. Crossley, S. K. Hildebrand: Semi-topological properties, Fund.Math. 74 (1972), 233-254.         [ Links ]

[6] N. Ergun, T. Noiri: On α-paracompactness subsets, Bull. Math. Soc. Sci. Math. Roumanie 36 (84) (1992), 259-268.

[7] N. Ergun, T. Noiri: Paracompactness modulo an ideal, Math. Japonica 42 (1) (1995), 15-24.         [ Links ]

[8] T. R. Hamlett, D. Rose, D. Janković: Paracompactness with respect to an ideal, Internat. J. Math. & Math. Sci. 20 (3) (1997), 433-442.         [ Links ]

[9] I. Kovačević: Locally almost paracompact spaces, Review of Research, Faculty of Science, Univ. Novi Sad 10 (1980), 85-91.         [ Links ]

[10] K. Kuratowski: Topologie I, Warszawa, 1933.         [ Links ]

[11] N. Levine: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.         [ Links ]

[12] N. Levine: Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (1970), 89-96.         [ Links ]

[13] P.-Y. Li, Y.-K. Song: Some remarks on S-paracompact spaces, Acta. Math. Hungar. 118 (4) (2008), 345-355.         [ Links ]

[14] R. L. Newcomb: Topologies wich are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.         [ Links ]

[15] J. Sanabria, E. Rosas, C. Carpintero, M. Salas-Brown and O. García. S-Paracompactness in ideal topological spaces, Mat. Vesnik 68 (3) (2016), 192-203.         [ Links ]

[16] M. I. Zahid: Para H-closed spaces, locally para H-closed spaces and their minimal topologies, Ph. D. Dissertation, Univ. of Pittsburgh, 1981.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons