SciELO - Scientific Electronic Library Online

 
vol.17 número3Degenerate k-regularized (C1, C2)-existence and uniqueness families índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Cubo (Temuco)

versão On-line ISSN 0719-0646

Cubo vol.17 no.3 Temuco  2015

http://dx.doi.org/10.4067/S0719-06462015000300001 

Right General Fractional Monotone Approximation

 

George A. Anastassiou

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A., ganastss@memphis.edu


ABSTRACT

Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g. We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on [a, b], and let L be a linear right general fractional differential operator such that L (f) is non-negative over a critical closed subinterval J of [a, b]. We can find a sequence of polynomials Qn of degree less-equal n such that L (Qn) is non-negative over J, furthermore f is approximated uniformly by Qn over [a, b] . The degree of this constrained approximation is given by an inequality using the first modulus of continuity of f(p). We finish we applications of the main right fractional monotone approximation theorem for different g.

Keywords and Phrases: Right Fractional Monotone Approximation, general right fractional derivative, linear general right fractional differential operator, modulus of continuity.
2010 AMS Mathematics Subject Classification: 26A33, 41A10, 41A17, 41A25, 41A29.


RESUMEN

Aquí introducimos una derivada fraccional derecha general al estilo de Caputo con respecto a una base de funciones absolutamente continuas estrictamente crecientes g. Damos varios ejemplos de dichas derivadas fraccionales derechas para diferentes g. Sea f una función p-veces continuamente diferenciable en [a, b], y sea L un operador diferencial fraccional derecho general tal que L(f) es no-negativo en un subintervalo cerrado crítico J de [a, b]. Podemos encontrar una sucesión de polinomios L (Qn) de grado menor o igual a n tal que L (Qn) es no-negativo en J, más aún f es aproximada uniformemente por Qn en [a, b] . El grado de esta aproximación restringida es dada por una desigualdad usando el primer módulo de continuidad de f(p). Concluimos con aplicaciones del teorema principal de aproximación monótona fraccional derecha para diferentes g.


 

References

[1] G.A. Anastassiou, Right Fractional Monotone Approximation, J. Applied Functional Analysis, Vol. 10, No.'s 1-2 (2015), 117-124.         [ Links ]
[2] G.A. Anastassiou, Left gereral fractional monotone approximation theory, submitted, 2015.         [ Links ]
[3] T. Apostol, Mathematical Analysis, Addison-Wesley Publ. Co., Reading, Massachusetts, 1969.         [ Links ]
[4] G.A. Anastassiou, O Shisha, Monotone approximation with linear differential operators, J. Approx. Theory 44 (1985), 391-393.         [ Links ]
[5] A.M.A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz derivatives, Electronic Journal of Theoretical Physics, Vol. 3, No. 12 (2006), 81-95.         [ Links ]
[6] D. Jackson, The Theory of Approximation, Amer. Math. Soc. Colloq., Vol. XI, New York, 1930.         [ Links ]
[7] Rong-Qing Jia, Chapter 3. Absolutely Continous Functions, https://www.ualberta.ca/˜rjia/Math418/Notes/Chap.3.pdf
[8] A.         [ Links ]A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, New York, NY, USA, 2006.         [ Links ]
[9] H.L. Royden, Real Analysis, second edition, Macmillan Publishing Co., Inc., New York, 1968.         [ Links ]
[10] Anton R. Schep, Differentiation of Monotone Functions, people.math.sc.edu/schep/diffmonotone.pdf.         [ Links ]
[11] O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667-671.         [ Links ]
[12] S.A. Teljakovskii, Two theorems on the approximation of functions by algebraic polynomials, Mat. Sb. 70 (112) (1966), 252-265 [Russian]; Amer. Math. Soc. Trans. 77 (2) (1968), 163-178.         [ Links ]
[13] R.M. Trigub, Approximation of functions by polynomials with integer coeficients, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 261-280 [Russian].         [ Links ]


Received: April 2015. Accepted: July 2015.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons