SciELO - Scientific Electronic Library Online

 
vol.12 número3Strichartz Estimates for the Schrödinger Equation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.12 no.3 Temuco  2010

http://dx.doi.org/10.4067/S0719-06462010000300015 

CUBO A Mathematical Journal Vol.12, N° 03, (241–253). October 2010

 

On the Weyl Transform with Symbol in the Gel’fand-Shilov Space and its Dual Space

 

YASUYUKI OKA

Department of Mathematics, Sophia University 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan email: yasuyu-o@hoffman.cc.sophia.ac.jp


ABSTRACT

In this paper, we claim two subjects. One is that the Weyl transform with symbol in the Gel’fand-Shilov space l rr , r ≥ 1/2 , is a trace class operator. The other one is that the Weyl transform with symbol in the generalized function (l rr )1, r ≥ 1/2 , is a continuous linear transformation from the Gel’fand-Shilov space l rr to (l rr )1. As r > 1, Z. Lozanov- Crvenkovic and D. Perišic have proved in [6] this result. Our second claim includes their result.

Key words and phrases: Weyl transform, Gel’fand-Shilov space, Fourier-Wigner transform, trace class operator, Schwartz’s kernel theorem.


RESUMEN

En este artículo afirmamos dos asuntos. El primero es que la transformada de Weyl con símbolo en el espacio de Gel’fand-Shilov l rr , r ≥ 1/2 , es un operador de clase trazo. El segundo asunto es que la transformación de Weyl con símbolo en las funciones generalizadas (l rr )1, r ≥ 1/2 , es una transformación lineal continua del espacio Gel’fand-Shilov l rr to (l rr )1 . Como r > 1, Z. Lozanov-Crvenkovic y D. Perišic probaron en [6] este resultado. Nuestro resultado incluye su resultado.

Math. Subj. Class.: 46F05; 46F15; 81R15; 81S40.


References

[1] CAPPIELLO, M., GRAMCHEV, M.T. AND RODINO, L., Gelfand-Shilov spaces, pseudodifferential operators and localization operators, in Modern Trends in Pseudo- Differential Operators, Editors: Toft, J., Wong, M.W. and Zhu, H., Birkhäuser, 297–312.

[2] CHUNG, S.-Y., KIM, D. AND LEE, E.G., Schwartz kernel theorem for the Fourier hyperfunctions, Tsukuba J. Math., Vol. 19, N.2 (1995), 377–385.

[3] DONG, C. AND MATSUZAWA, T., l -space of Gel’fand-Shilov and differential equations, Japan. J. Math. Vol. 19, N.2, (1994), 227–239.

[4] GEL’FAND, I.M. AND SHILOV, G.E., Generalized Functions Vol. 2, Academy of Sciences Moscow, U.S.S.R, 1958.

[5] GRÖCHENIG, K. AND ZIMMERMANN, G., Spaces of test functions via the STFT, J. Function Spaces Appl., 2 (2004), 25–53.

[6] LOZANOV-CRVENKOVIC , Z. AND PERIŠiC , D., Kernel theorem for the space of tempered ultradistributions, Integral Transforms and Special Functions, Vol. 18, N.10, October (2007), 699–713.

[7] NAGAMACHI, S. AND MUGIBAYASHI, N.,Hyperfunction quantum field theory, Commun. math. Phys., 46 (1976), 119–134.

[8] OKA, Y., N-representation for l and l′, Sophia Univ. Master’s Thesis, 2002.

[9] POOL, J.C.T., Mathematical aspects of the Weyl correspondence, J. Math. Phys. vol. 7, N.1, January (1966), 66–76.

[10] SIMON, B., Distributions and their Hermite expansions, J. Math. Phys. vol. 12, N.1 (1971), 140–148.

[11] SIMON, B., The Weyl transform and Lp functions on phase space, Proc. Amer. Math. Soc., 116 (1992), 1045–1047.

[12] TOFT, J., Continuity properties for modulation spaces with applications to pseudodifferential calculus, I, J. Funct. Anal., 207 (2), (2004), 399–429.

[13] VOROS, A., An algebra of pseudodifferential operators and the asymptotics of quantum mechanics, J. Funct. Anal., 29 (1978), 104–132.

[14] WEYL, H., The Theory of Groups and Quantum Mechanics, Dover, New York, 1950.        [ Links ]

[15] WONG, M.W., Weyl Transforms, Springer-Verlag, New York, Inc., 1998.        [ Links ]

[16] YOSHINO, K. AND OKA, Y., Asymptotic expansions of the solutions to the heat equations with hyperfunctions initial value, Commun. Korean Math. Soc., 23 (2008), N.4, 555–565.

[17] ZHANG, G.-Z., Theory of distributions of S type and pansions, Chinese Math. Acta., 4 (1963), 211–221.